
Discovering Themes by Exact Pattern Matching
Lloyd Smith and Richard Medina

New Mexico Highlands University
 Las Vegas, NM 87701

+1 505 454-3071

{las,richspider}@cs.nmhu.edu

1. INTRODUCTION
Content-based music information retrieval provides ways for
people to locate and retrieve music based on its musical
characteristics, rather than on more familiar metadata such as
composer and title. The potential util ity of such systems is
attested to by music librarians, who report that l ibrary patrons
often hum or whistle a phrase of music and ask them to identify
the corresponding musical work [5, 7].

Content-based MIR systems operate by taking a musical query
(i.e., a string of notes) from the user and searching the music
database for a pattern closely matching the query. The search
may be carried out by exhaustively matching the database [5] or
by matching an index of n-grams created by passing a sliding
window of length n over the database [2].

While these exhaustive search methods are adequate for
relatively small music databases they do not scale well to large
collections such as thousands of symphonies and other major
works.

Fortunately, for large classical works, such as sonatas and
symphonies, it is possible to avoid exhaustive search by using an
index of themes. A theme, in classical music, is a melody that the
composer uses as a starting point for development. A piece of
music may have several themes; each of them will repeat and
may be slightly changed (a “variation”) by the composer on
repetition. Using such an index greatly condenses the search on a
database of classical major works. Furthermore, themes are the
musical phrases likely to be remembered by listeners, so a theme
index helps focus the search on the parts of the database most
likely to match a query.

One well known theme index is that produced by Harold Barlow
and Sam Morgenstern [1]. This is a print book containing
approximately 10,000 themes from the classical music genre.
Each theme is identified by composer, title of work and section
of appearance (movement for symphony, act for ballet, overture
for opera, and so forth). In addition to its print edition, this theme
index can also be searched online [3].

Unfortunately, it is a monumental task to manually compile such
a theme index. Because themes are, by definition, recurring
patterns in a piece of music, it should be possible to automate the
discovery of musical themes in order to create a theme index
over a given database.

Our goal is to perform this automation – to analyze a piece of
music and automatically determine its themes. Some work has

been done on finding themes in music. Mongeau and Sankoff, for
example, suggested the use of dynamic programming for finding
recurring sections in a piece of music [6]. Their method,
however, was somewhat cumbersome, relying on a closeness
threshold to determine the beginnings and ends of recurring
musical patterns.

2. DISCOVERING THEMES IN MUSIC
Because a theme, by definition, is a melody that the composer
uses as a starting point for variation, most researchers have
assumed that a theme discovery system must use approximate
string matching [6].

Our approach takes the view that a theme dictionary may be
constructed using an exact match of the musical sequence against
itself. Our hypothesis is that a significant part of a theme is likely
to repeat at least once, and that smaller chunks of a theme are
likely to repeat multiple times. The basic idea is similar to that
followed by Liu, et al. [4], but, where they build theme
candidates by joining small repeating patterns into larger ones,
we start with the longest repeating patterns and look for
continuations and substrings.

Theme discovery is essentially a search for self-similarity in a
piece of music. For that reason, we begin by creating a self-
similarity matrix. For a musical piece of n notes, this is an n x n
matrix representing where each interval exactly matches another
interval in the piece – a repeated interval is represented by a 1 in
the matrix. We use intervals in order to make our analysis
independent of key. This does not make the analysis independent
of mode – our algorithm is not l ikely to find repetitions of a
major-key theme in minor mode, for example, or vice versa. If,
however, a variation repeats multiple times, our algorithm will
discover those patterns.

From the self-similarity matrix, we build a lattice showing all
repeating patterns longer than a predetermined length and their
relationships. At this point we are analyzing all repeating
patterns of four or more notes. This lattice is further processed
and used to determine which patterns to keep as candidate
themes.

3. CASE STUDY
As a simple test of our algorithm, we used it to identify repeating
patterns in Bach’s Fugue No. 7, from the Well Tempered
Clavier. We used only the top (soprano) part of the fugue – this
is to find out whether our algorithm can find the theme without
seeing its reiterations when the second and third voices enter.
When processing the entire piece, we simply concatenate all
parts to form one long sequence – this enables the algorithm to
capture themes from repetitions in different voices, but does not
attempt to discover themes split among more than one voice – the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.

algorithm is not expected to find a theme, for example, that starts
in the first violin and migrates into the cello.

Figure 1 shows part of the lattice built from the top part of Fugue
No. 7. As stated above, we ignore repeating patterns of fewer
than 4 intervals.

Figure 1. Partial lattice for fugue no. 7.

The lattice clearly shows a pattern of 18 notes, labeled A, near
the beginning of the piece, starting with the second interval. This
is not surprising, given the structure of a fugue, with the
introductory statement of the subject. Pattern B is a substring of
A, while pattern C overlaps A. Patterns D, E and F are substrings
of C. This is only part of the lattice; pattern A repeats at position
311, B repeats at 93 and 311, C repeats at 103, and so forth. The
lattice shows one repeat of pattern E at 64; E also repeats at 109
and 133. Pattern I overlaps itself, starting at position 44 and
ending – and starting again – at position 49. A total of 20
repeating patterns were found.

We envision the theme index being searched by approximate
search on user queries. For that reason, it is unecessary to keep
patterns that are substrings of other patterns. Furthermore, we
extend candidate themes by combining overlapping patterns.
Figure 2 shows the lattice after discarding substrings and short
patterns that occur only twice. Overlapping patterns A and C
have been combined into one longer pattern. In fact, AC is the
theme of the fugue – minus the first interval – as listed by
Barlow and Morgenstern [1].

Figure 2. Lattice for fugue no. 7 after pruning.

Pattern G appears twice in the fugue, it is long, and it has a
substring that repeats, so it is included in the final l ist of patterns
to be added to the theme dictionary.

Pattern L is mostly a substring of AC, and could be eliminated.
However, it adds two (tied) notes to the beginning of AC and, at
this point, is left in the list because of that extension. It is, in
fact, a theme variation.

Pattern Q remains in the list because of its length. It appears only
twice and has no repeating substrings. Inspection of Q shows that
it is another variation on part of the theme, and it leads into a
repetition of pattern C. Q is very similar to pattern B (the
intervals up to the rest in AC), but introduces an E-natural in
place of the expected E-flat.

Given the fact that a theme index is expected to be searched
using approximate matching, it is l ikely that patterns L and Q
should not be included – the first part of pattern AC is close
enough to both of them to allow user queries to retrieve this
particular fugue.

Figure 3 shows musical notation, extracted from the score, for
patterns AC, G, L and Q,.

(a) Pattern AC

(b) Pattern G

(c) Pattern L

(d) Pattern Q

Figure 3. Candidate themes from Fugue No. 7.

4. CONCLUSION
This paper describes a method for automatically discovering
themes in music. A program based on this algorithm can generate
a theme index from a music database.

At this point, we have tested the algorithm using simple musical
structures – namely, fugues. This provides a suitable beginning
test because we can easily analyze whether the program is acting
appropriately. In developing the algorithm, we have not made use
of any musical knowledge regarding the structure of fugues, but
have let the algorithm discover what it regards as themes. Our
immediate goal now is to test the algorithm over a much wider
range of music. A longer term goal is to produce a music analysis
system based on the algorithm and to incorporate more
sophisticated approximate matching to complement the base
algorithm.

5. REFERENCES
[1] Barlow, H. and S. Morgenstern. A Dictionary of Musical

Themes, Crown Publishers, NY, 1948.

[2] Downie, J. S. and M. Nelson. “Evaluation of a simple and
effective music information retrieval method,” Proc ACM
SIGIR 2000, 73-80, 2000.

[3] Huron, D. Themefinder, http://www.themefinder.org/.

[4] Liu, C. C., J. L. Hsu and A. L. P. Chen. “Efficient theme
and non-trivial repeating pattern discovering in music
databases,” Proc. IEEE Intl. Conf. on Data Engineering, 14-
21, 1999.

[5] McNab, R. J., L. A. Smith, I. H. Witten and C. L.
Henderson, “Tune retrieval in the multimedia library,”
Multimedia Tools and Applications 10, 113-132, 2000.

[6] Mongeau, M. and D. Sankoff. “Comparison of musical
sequences,” Computers and the Humanities 24, 161-175,
1990.

[7] Salosaari, P. and K. Jarvelin. “MUSIR -- a retrieval model
for music,” Technical Report RN-1998-1, University of
Tampere, Department of Information Studies, 1998.

