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1. INTRODUCTION 
While it is clear that user modeling could be valuable in many 
music retrieval contexts [1], the focus in this paper is on content-
based music retrieval as in the WYHIWYG (What You Hum Is 
What You Get) paradigm [5], also referred to as Query-by-
Humming. Desirable data to include in such a user model 
include: 

♦ Musical preferences, expressed by the user by answering the 
system’s questions (examples can be found in [1]). 

♦ History-oriented information computed by the system, e.g. the 
music genre most often retrieved by the user recently (or up to 
now). 

Such data can indeed be util ized by a CBMR system to bias its 
search results, hopefully making the latter more accurate. Based 
on user data the system builds expectations which are used to 
fi lter candidate results. For instance, if a song belonging to the 
user’ s most usually retrieved music genre matches the user’s 
query, it would be advantaged by the system over a matching 
song of a genre the user never retrieved before. Similarly for 
songs belonging or not to a genre declared by the user as being 
among his/her favorite. A number of methods have been 
proposed for collecting, representing and updating these more 
traditional kinds of user data. These are out of the scope of this 
paper.  

In this paper the focus will be on presenting concepts and tech-
niques for modeling a user ’ s sense of musical similar ity, which 
I see as absolutely central. However the similarity model which 
will be proposed throughout the rest of this paper is seen as part 
of a larger user model including the more ‘ traditional’  data types 
mentioned above. Whatever the user modeling paradigms used, I 
suggest that user models in CBMR should be adaptive. This 
means that the model is continuously enhanced throughout the 
successive interactions with the user. While it can be desirable to 
initialize user X’s model by asking X a series of questions, the 
adaptive paradigm allows to instead initialize the model of every 
new user to a default and then automatically, incrementally 
personalize it based on the user’s feedback.  

In the next section I explain why modeling of a user’ s sense of 
musical similarity is seen as central in a CMBR system. 

2. RATIONALE 
The rationale behind this work lies in the following points: 

♦ A. Most — if not all — content-based retrieval systems for 
music use similarity searching. 

♦ B. Similarity search is based on an explicit, or sometimes im-
plicit, formal model of musical similar ity as it is perceived 
by human listeners. In this paper, to avoid any confusion be-
tween ‘musical similarity model’  and ‘user model’  the former 
will be designated by the more restrictive term ‘melodic simi-
larity function’ . Such a mathematical function is designed to 
automatically compute the similarity between two melodic 
pieces or passages, often entailing a whole algorithm such as a 
dynamic programming one. Many different such functions 
have been proposed. Each is underlied by a sequence 
comparison scheme that is either exact or approximate (strict 
vs. error-tolerant matching), binary or gradual (boolean vs. 
gradual similarity function), etc. — see e.g. [4] for a review 

♦ C. Human judgments of musical similarity are multidimen-
sional. This means that the perceived degree of similarity of, 
say, two passages not only derives from the absolute pitch and 
duration of the notes heard but generally from a far larger set 
of musical characteristics of the two passages.  

♦ D. The relative importance of descriptions in the overall simi-
larity judgment can be different from one description to an-
other. As a well-known example, it has been established that 
two isochronous passages having exactly the same underlying 
interval sequence are often judged more similar than two iso-
chronous passages having mostly the same absolute pitches 
sequence but with several mismatches.  

♦ E. Last but not least, the relative impor tance of one given 
descr iption can vary from one individual to another . For 
instance, for certain human subjects rhythmic aspects con-
tribute more strongly to similarity than pitch aspects, and vice-
versa. 

For all these reasons I suggest it is desirable that CBMR systems 
should use not only general user models, but also models of 
users’  sense of musical similarity. Since there is no way to 
(entirely) predict the parameter values of such a similarity model 
beforehand — i.e. based on general user characteristics of the 
user — the model should be adaptive. In other words, the system 
adjusts the similarity model based on user feedback received 
during successive interactions with the user (search sessions). 

There is a trade-off between search speed and search quality. 
Very fast search techniques have been developed for CBMR (e.g. 
[2]), which is convenient for allowing the user to carry out for 
instance a broad 'initial screening' of a music content database. 
However these techniques easily lack recall (or even precision) 
because their time efficiency relies on the simplicity of musical 
similarity models and, correlatively, on the strictness of match 
criteria. Similarly to standard text-based search engines, it is 
seen as important that CBMR systems should also offer 
‘ advanced’  or ‘ specialized’  search modes based, among others, 



on richer musical similarity models and more flexible match 
criteria. The ideas and techniques presented in this paper should 
prove even more useful for these slower search paradigms. 

3. USER MODELING PARADIGM 
The proposed user modeling paradigm is intrinsically linked to 
the CBMR framework in general, and to that of melodic 
similarity assessment schemes it uses. These frameworks are 
presented in the first three subsections. 

3.1 CBMR Framework 
The CBMR paradigm in which we place, viz. that of the 
Melodiscov system [5] will now be briefly described. 
Schematically, pattern-matching techniques are used to match the 
user’ s query against the target collection of music pieces (see 
Figure 1). The underlying similarity function (see 3.2) being 
gradual, search results are returned under the form of a ranked 
list of matches, by decreasing order of match quality. In the 
typical querying mode, the user can hum, sing (with lyrics), 
whistle or play an acoustic instrument, in which case 
Melodiscov’s transcription module transforms the audio query 
into a MIDI-like music structure called raw symbolic query. 
(Here the adjective ‘ symbolic’  is used to distinguish between 
direct content, viz. digital audio signal, and abstract content such 
as MIDI or score representations).  
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Figure 1. CBMR paradigm (Melodiscov system) 

Although some of the concepts and techniques proposed in this 
paper would apply to other kinds of CBMR schemes, it is as-
sumed here that the target content database is a collection of mu-
sical works such as MIDI songs, called melodic database. In that 
phrase as well as in the rest of the paper, ‘melodic’  is used to 
distinguish from other kind of musical content, e.g. harmonic 
(chord) sequences. However ‘melodic’  does not imply 
monophonic material or mere pitch sequences with no rhythmic 
information. 

3.2 Melody Representation 
In Melodiscov music is represented using multiple characteristics 
(called descriptions henceforth). These are derived from the im-
mense body of work that has been carried out in the areas of mu-
sic psychology, music perception and cognition, and music theory 
at large. The various descriptions for melodic material are 
categorized according to their horizontal span (examples given 
below do not necessarily fit all melody retrieval contexts — a far 
more complete list can be found in [3]): 

♦ Individual descriptions correspond to individual notes (or 
rests, or chords). Examples: ‘absolute pitch’ , ‘ forward interval 
direction’ , ‘ backward chromatic interval’ , ‘ backward duration 
ratio’ , ‘ forward metric variation’… 

♦ Local descriptions correspond to groups of notes (or 
rests/chords). Examples: ‘ ascending pitch contour’ , ‘gap-fil l ’ , 
‘ phrase-based grouping’… 

♦ Global descriptions correspond to a whole melody (viz. one 
song in the searched database or the 

hummed/sung/whistled/… query). Examples: ‘ pitch 
histogram’ , ‘ average note duration’  ‘ time signature’ , ‘overall 
tonality’ . 

The raw symbolic query output by the query transcription module 
is, roughly speaking, a MIDI melody. Similarly, currently in 
Melodiscov the melody database is initially made of standard 
MIDI fi les. This initial, MIDI-type, representation comprises 
only three descriptions: the individual descriptions absolute pitch 
(or Midipitch 0-127), relative duration (in number of beats) and 
absolute amplitude (0-127). An algorithmic step is required to 
compute the final representation from the initial one. An 
automated representation enrichment phase is inserted in the 
CBMR algorithmic scheme. In an incremental process, descrip-
tions are derived one after the other from basic descriptions 
and/or already derived descriptions, in a specific order (see [3] 
for more details). 

3.3 Melodic Similar ity Assessment 
3.3.1 Overview  
The melodic similarity function used in Melodiscov is based on 
the Multidimensional Valued Edit Model or MVEM (see e.g. 
[4]). MVEM has been designed to accommodate the multiplicity 
of musical descriptions, each possibly with a different horizontal 
span. MVEM generalizes the basic string edit distance 
framework and allows to carry out soft matching, i.e. allows a 
level of discrepancy between the query and a candidate passage 
in a target music work. Such error tolerance is fundamental in 
CBMR systems because errors in CBMR result from many 
possible causes: 

♦ Users’  inaccurate remembering of the searched melody  
♦ Monophonic rendering, by users, of inherently polyphonic queries 

(think for instance of a theme with some bi-phonic passages) 
♦ Transcription process, either because the query is physically 

too inaccurate (wrong pitches and/or rhythm) or because of 
technical shortcomings in the transcription algorithm. 

3.3.2 MVEM in greater detail 
MVEM will now be described in more technical terms, using as 
an example the similarity computation between the two passages 
shown in Figure 2. These two passages illustrate typical orna-
mentation cases that can be encountered in CBMR.  
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Figure 2. Two melodic passages (Joseph Haydn, Concerto for  

Trumpet in Eb major) 

To compare two passages, the optimal correspondence scheme 
between their respective elements is determined. A ‘ correspon-
dence scheme’ , called alignment, is a series of pairings, with 
each pairing meaning that two groups of notes and/or rests are 
put in correspondence (see Figure 3 and Figure 4). For instance, 
the second pairing in Figure 3 puts in correspondence notes 2 
and 3 of passage 1 with notes 2, 3, 4 and 5 of passage 2. This is 
depicted in gray on the figure as two ellipses connected by an ori-
ented link. I have introduced the notion of pairing to define 
alignments as it provides a richer and more flexible formalism 
than the traditional ‘ edit operations’  formalism. Each group in a 
pairing may contain only one note or even zero note (see below). 
The succession of pairings forming an alignment between the 
two passages is interpreted as a transformation of passage 1 into 
passage 2. For instance, in Figure 4 it is considered that the final 



Eb (quarter note) in passage 1 is replaced by the final Eb (half 
note) of passage 2. Similarly, in passage 2 the second Eb is said 
to be inserted.  

For any pairing the number of notes in each group determine the 
pairing type. Let the signature of a pairing be the integer pair 
(#G1,#G2) where #G1 (resp. #G2) is the number of notes and/or 
rests in the pairing’ s first group (resp. second group). In the 
above example, the pairing’s signature is (2,4).  

♦ Pairings with a signature of that form, i.e. (r, s) where r > 1 
and s > 1 are called generalized replacements.  

♦ Pairings with signature (1,1), such as the first pairing in 
Figure 3, are called [individual] replacements.  

♦ (0,s) pairings, where s > 1, are called generalized insertions.  
♦ (r,0) pairings, where r > 1, are called generalized deletions.  
♦ (0,1) pairings are called [individual] insertions. 
♦ (1,0) pairings are called [individual] deletions. 

As can be seen, such important musical notions as ornamentation 
or variation can be neatly dealt with in this framework. One 
other powerful feature of MEVM is that it can elicit (or explain) 
the similarity between two passages P and P’ , but this is out of 
the scope of this paper. 

 
Figure 3. One possible alignment between the two passages, 

using 2 individual replacements and 2 generalized 
replacements 
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Figure 4. Another possible alignment between the two pas-

sages, using 6 individual replacements and 4 insertions 

3.4 Valuation 
In a valued edit model, a similarity contribution function (in 
short ‘ contribution function’ ) is associated to each pairing type. 
Every pairing p in an alignment gets a numerical evaluation 
contrib(p) reflecting its individual contribution to the overall 
similarity. The contribution may be positive or negative. The 
various descriptions in the representation are simultaneously 
taken into account in contribution functions using a weighted 
linear combination paradigm, as shown in Equation 1. contrib(p) 
is the sum, over all descriptions belonging to the music 
representation R, of terms wD×contribD(p), where: 

♦ wD is the weight attributed to description D, a real number in 
[0;1]. A weight has value zero iff the associated description is 
not taken into account in the model, at least at that particular 
moment. 

♦ contribD(p) is the contribution of p seen only from the point of 
view of description D. Suppose for example that p is the re-
placement of the final Eb (quarter note) in passage 1 by the fi-
nal Eb (half note) of passage 2 in Figure 4. Consider the basic 
descriptions D1: ‘ degree of note in overall tonality’  and D2: 
‘ relative duration of note in beats’ . We can expect 

contribD1(p) to have a strong positive value because the degree 
is the same for both notes. Conversely, contribD2(p) can be 
expected to have a (moderately) negative value because the 
duration of the ‘ replacing’  note is double that of the ‘ original’  
note.  

The value of an alignment is the sum of all of its constitutive 
pairings contributions (Equation 2). Finally, the similar ity be-
tween passage 1 and passage 2 is defined as being the greatest 
value of all possible alignments between the two passages. 
There are several techniques, based on dynamic programming, 
for computing that greatest value as well as, if needed, the corre-
sponding alignment(s). In the case of CBMR, the matching qual-
ity (or ‘matching score’ , etc.) between a query and a music work 
is the greatest value of all possible alignments between the query 
and a passage of the work. The search results are made of the list 
of works, ordered by decreasing matching quality, whose match-
ing quality is above a predefined threshold. 
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Equation 2 

3.5 Model Representation and Adaptation 
3.5.1 Description weight vector 
A user’ s sense of melodic similarity is modeled using a scalar 
vector which we call description weight vector (DWV). The 
DWV contains the weight wD of each description D in the music 
representation, each weight being able to vary throughout user 
interaction — primarily search sessions. This user model under-
lies a melodic similarity function that emulates as closely as pos-
sible the user’s sense of melodic similarity.  

The numeric vector format of the user model allows it to be 
shared by different applications or agents. In fact, a musical simi-
larity function is inherently modular, other musical software such 
as navigational interfaces, pattern extraction programs and so on 
can directly reuse it for the omnipresent purposes of melodic 
comparison. Also, a DWV can directly be merged with a sharable 
user model such as the one suggested in [1]. 

3.5.2 Initialization and interaction 
The first time a user uses Melodiscov, the DWV is initialized by 
setting all of its components (description weights) to a default 
value of 0.5.  

Every time the user is presented with a ranked list of search re-
sults, s/he gives feedback to the system in two possible fashions: 

♦ In the simplest interaction mode, single match feedback, s/he 
just tells the system which of the found matches is correct, i.e. 
corresponds to the music work actually looked for. In case that 
music piece does not appear in the system’s list of matches, 
the user may request that lower quality matches, if any, should 
be displayed. These are matches whose similarity scores are 
below a given constant threshold specific to the CBMR 
system. 

♦ In a more complex one, ranked match feedback, s/he gives 
her/his own ranking of some or all of the matches. Think for 
instance of a content database containing several variations of 
a target song; these variations could be designated by the user 
to the system as ‘ reasonable secondary matches’ . 

3.5.3 Model update  
Unless the user has confirmed the system’s best match (single 
match feedback) or best matches (multiple match feedback), the 



user’ s DWV is updated in the following manner. (For the sake of 
simplicity it will be assumed that single match feedback mode 
has been used; feedback in the other mode is dealt with 
similarly).  

The system’s ranked list { M1,…, Mm}  of matches is separated in 
three groups (in decreasing order of match quality as computed 
by the system) : 

♦ the group FP={FP1, ..., FPf}  of all the ‘ false positive’  matches 
(i.e. all matches reported by the system with a better matching 
score than the correct match. In other words, if the user selects 
Mi the list’ s then FP={ M1..M i-1} ) 

♦ the correct match C 
♦ the group S of all subsequent matches proposed by the system 

For each, the contribution of each description to the matching 
score is computed. The weights of some, if not all, weights in the 
user’ s DWV are then adjusted in such a way that, after adjust-
ment, the new ranking gets closer to what it should be, i.e. C 
should be ranked first. The actual update algorithm in detail is 
not important here, what is key is the underlying idea. The latter 
will be presented through two characteristic cases:  

♦ For each description D such that the term vC,D is greater than 
its vertically homologous terms in FP1, … FPf (viz. vFP1,D, … 
vFPf,D ), WD is increased in the following manner :  

( ) DD wkw += 1  

Intuitively, this is based on the observation that, if a term vC,Di 
contributes more to the similarity in the correct match than in 
the false positive matches, it should be reinforced via an in-
crease of its weight. 

♦ Conversely, for each description D such that the term vC,D is 
lesser than its corresponding terms  vFP1,D, … vFPf,D:   
WD is decreased in the following manner :  

( )kww DD += 1/  

This is based on the observation that, if a term vC,D contributes 
more to the dissimilarity in the false positive matches than in the 
correct match, it should be attenuated via a decrease in its weight. 

The positive real number k is called update rate. Of course, k 
values close to 0 induce weak updates while higher values induce 
more drastic updates. In order to force model convergence (stabi-
lization), k can also be made a decreasing function of time, tend-
ing to zero. This is similar to the temperature function used in 
simulated annealing algorithms.  

What has just been presented is the normal, ‘ ongoing’  interaction 
scenario: model update occurs based on feedback the user gives 
throughout successive search sessions. In addition, the user can, 
initially but also at any time, enter system learning sessions that 
are directed toward fast user model learning. In these sessions, 
instead of carrying out CBMR searches the user makes direct 
similarity judgments about melodic material presented by the 
system. In the simplest setting, the user is presented with 
melodic passages A, B and B’  and must tell the system which of 
the pairs A-B and A-B’  is more similar. Of course, every (A,B,C) 
triplets is chosen (by the system’s designer) so as to emphasize 
the contrast between two particular descriptions. The results of 
the successive similarity rankings made by the user during such a 
learning session are finally aggregated, resulting in an 
appropriate update in the user’ s DWV. 

As can be observed, the current weight update scheme uses a 
fixed strategy similar to error gradient feedback in neural net-
works. It should be remarked that other strategies such as evolu-
tionary algorithms could be other appropriate candidates.  

4. RELATED AND FUTURE WORK 
The techniques proposed in this paper are currently being imple-
mented within the Melodiscov system. Melodiscov uses a core 
set of object-oriented classes and methods allowing to represent 
music with multiple, individually weighted descriptions. Using 
that same representation platform, the influence of description 
weight adjustment has been experimented in the context of 
automated musical pattern extraction [3], a problem area directly 
connected to that of CBMR. Additionally, the outcome of the 
work presented in [6] may be very useful. 

The current priority is on completing implementation and experi-
menting with the system. One future work direction concerns 
model initialization. Currently the initial user model is a default 
that is the same for every user. I wish to investigate whether 
more appropriate initial models could be generated for every user 
based on the characteristics recorded in a standard, ‘ general’  user 
model. For instance, suppose that user X’s general model says 
that X has received significant musical education. Stronger 
weights would then be given to the more abstract descriptions in 
user X’s initial model (e.g. harmony-oriented ones) than if X was 
known to have received no musical education. While this simple 
example relies on common sense, more probabilistically accurate 
initialization strategies for user models could be designed based 
on statistical analysis of evolved and stabilized user models of 
perceived musical similarity. Another future work direction is 
investigating aggregation/fusion strategies for synergetically 
mixing the DWV-based model with more ‘ traditional’  user 
models such as the ones mentioned in the first section of this 
paper.  
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