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ABSTRACT 
We present a hybrid method in which we classify music 
from a raw audio signal according to their spectral features, 
while maintaining the ability to assess similarities between 
any two pieces in the set of analyzed works.  First we 
segment the audio file into discrete windows and create a 
vector of triplets respectively describing the spectral 
centroid, the short-time energy function, and the short-time 
average zero-crossing rates of each window. In the training 
phase these vectors are averaged and charted in three-
dimensional space using k-means clustering. In the test 
phase each vector of the analyzed piece is considered in 
terms of its proximity to the graphed vectors in the training 
set using k-Nearest Neighbor method. For the second phase 
we apply Foote's (1999) similarity matrix to retrieve the 
similar content of the music structures between two 
members in the database. 
 

1. ANALYSIS METHODS 
1.1  Spectral Centroid 
The spectral centroid is commonly associated with the 
measure of the brightness of a sound. The individual 
centroid of a spectral frame is defined as (here, F [k] is the 
amplitude corresponding to bin k in DFT spectrum..) 

                     
Figure 1 presents the weighted average spectral centroids of 
the two analyzed sound examples. The lower (magenta) 
band is an excerpt of the Kremlin Symphony's recording of 
Mozart's Symphony 25 (K. 183) and the upper (cyan) band 
is a rock style arrangement of the same musical segment. 
The high frequency components in the pervasively  
percussive rock version accounts for its higher placement 
on the graph. 

1.2  Short-Time Energy Function 
The short-time energy function of an audio signal is 
defined as: (where x(m) is the discrete time audio signal, n is time index 
of the short-time energy, and w(m) is a rectangular window.) 
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Figure 1. 

It provides a convenient representation of amplitude 
variation over time. Patterns of change over time suggest 
the rhythmic and periodic nature of the analyzed sound. 
Figure 2 is the short-time energy change of the same 
excerpts. The highly fluctuating rock version (cyan) 
resulting from the persistent drum beats compared to the 
more subdued but highly contrasting symphonic version 
suggests one possible determinant for genre classification. 
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Figure 2. 

.3  Short-Time Average Zero-Crossing Rate 
 the context of discrete-time signals, a zero crossing is 
id to occur if successive samples have different signs. 
he short-time averaged zero-crossing rate (ZCR) is 
efined as 
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igure 3 is the ZCR over time of the same two sound 
xamples, as before, the classical version is magenta and 
e rock version is cyan. Compared to that of speech 
gnals, the ZCR curve of music has much lower variance 
nd average amplitude and when averaged, shows 
gnificantly more stability over time. ZCR curves of music 
enerally have an irregular small range of amplitudes.  
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Figure 3. 

1.4  Foote’s Similarity Method 
Foote (1999) represents acoustic similarity between any 
two instants of an audio recording in a 2D representation,  
Figure 4 shows the ‘similarity matrix’ analyzed for the two 
music samples. The parameterization was done with a Mel-
frequency cepstral coefficient function with frame size 30. 
Both samples are about 16 seconds long and sampled at 
11025hz, 16 bits. The analysis visualizes the tripartite 
segmentation of the phrase in the 16 second excerpt 
(seconds 1-5, 5-12, and 12-16) in both the classical version 
(fig 4.1) and the classical version (fig 4.2). Despite the 
stylistic disparity between the two examples the musical 
similarity in terms of pitch and rhythmic structure is well 
represented. 

 
Figure 4.1. orchestral version. 

 
Figure 4.2. rock version 

 
Figure 5. Novelty scores of  

orchestral (left) and rock (right) version 

Figure 5 presents the novelty scores over time(second) of 
the two examples. In each figure the outputs with kernel 
sizes, from top down, 10, 20, 60 and 96. The graph of 
kernel size 96 displays three high peaks corresponding to 
the tripartite musical structure. The smaller the kernel size 
the greater the detail represented. This facilitates detection 
of discrete musical events. We are currently considering 
heuristics to find optimal kernel sizes to track appropriate 
novelty information. 
�

2.CONCLUSION 
In this paper we explored a computational model that 
combines classification and comparison of raw audio 
signals to explore the perceived similarity between musical 
recordings. Foote's (1999) similarity matrix retrieved the 
similar content of the music structures between two music 
samples even though their spectral components are 
different. Future research will focus on quantitative 
measurement of the degree of musical similarity between 
two works, as well as genre classification by statistical 
clustering. 
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