
Melody Matching Directly From Audio
Dominic Mazzoni

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213
(412) 268-3069

dmazzoni@cs.cmu.edu

Roger B. Dannenberg
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

(412) 268-3827

rbd@cs.cmu.edu

ABSTRACT
In this paper we explore a technique for content-based music
retrieval using a continuous pitch contour derived from a
recording of the audio query instead of a quantization of the query
into discrete notes. Our system determines the pitch for each unit
of time in the query and then uses a time-warping algorithm to
match this string of pitches against songs in a database of MIDI
files. This technique, while much slower at matching, is usually
far more accurate than techniques based on discrete notes. It
would be an ideal technique to use to provide the final ranking of
candidate results produced by a faster but lest robust matching
algorithm.

1. INTRODUCTION
Today, a musician who wishes to locate a particular song by

melody can use a number of different search programs that allow
one to input a few notes from the song (in any key), or even just
the melodic contour [1-6]. Realistically, most people are not
musically literate and are not capable of transcribing a melody
they are hearing in their heads into normal music notation. Even
identifying whether the next note in a sequence goes up, down, or
stays the same, is beyond the capabilities of many potential users.
That is the motivation behind creating an interface where the user
only needs to hum the melody he or she would like to search for.

It is not sufficient to rely on a melody transcription algorithm
to convert a digital recording of the hummed query into a
sequence of notes to search for in a song. Common problems
include regions where the pitch tracker cannot lock onto any
frequency, octave errors, and segmentation errors (two
consecutive notes mistranscribed as a long note or vice versa).

Instead we propose searching for a melody based on the best
estimate of the continuous pitch contour derived directly from the
audio recording. Speech recognition researchers have discovered
time and time again that in the many steps necessary to go from a
recording of speaking to the textual transcription, making hard
decisions at any step can be disastrous. Guided by this experience,
we try to eliminate the transcription steps that quantize pitches
and segment them into discrete notes, as this process is certain to
introduce errors.

This work is guided by the model of query-by-humming
systems. In such a system, the user hums, sings, or whistles (we

will refer to any of these simply as “humming”), and the system
finds matching entries in a music database. An entry matches if it
contains a close match to the hummed query. Since songs are
generally considered to be equivalent when performed at a speed
or in a different key, the system should be invariant with respect
to transposition and tempo.

2. METHODOLOGY
Our idea for searching based on the pitch contour is very

straightforward. First use a pitch transcription system to compute
the continuous pitch contour of the hummed query. (We
distinguish between pitch transcription systems, which simply
attempt to determine the pitch being hummed at each point in
time, and full melody transcription systems, which attempt to
extract a discrete series of notes, each with its own pitch, onset
time, and duration.) Overlay the pitch contour on top of every
possible place in the song, for every possible pitch offset, and for
a range of reasonable time scaling factors. For each position,
offset, and time scale, approximate the integral of the difference
between the instantaneous pitch at each point in time and the pitch
of the song at that point, giving a simple distance measure
between the two. The song that contains the minimum distance
measure is the one that best matches the query. Because hummed
queries are not likely to have a perfectly consistent tempo, we use
a dynamic time warping algorithm to allow for small rhythmic
differences.

This method is very computationally intensive, and even with
heavy optimization it is not likely to be fast enough to be a
complete melody-matching solution. However, note that pitch and
rhythm are taken into account without relying on pitch
quantization, beat induction, or note segmentation. We believe
this contributes to the improved accuracy of this method.

Here are the details of our implementation. We segment the
query and candidate melody into frames of 100 ms. (100 ms was
chosen as a compromise between efficiency and accuracy.) Then
we run the pitch transcription algorithm on each frame of the
audio recording of the humming. The pitch transcription
algorithm that we use is based on theenhanced autocorrelation
algorithm described by Tolonen and Karjalainen [7]. We
investigated many other pitch transcription programs, including
spectral-based approaches, other autocorrelation methods, and
commercial products, but found that choosing the peak of the
enhanced autocorrelation signal worked as well if not better than
anything else when the goal was simply to come up with one
target pitch for each frame. We represented pitches as MIDI note
numbers, allowing fractions, so for example 60.13 stands for a
pitch 13 cents above middle C. Other details, such as pitch ranges
for different singers and silence thresholds, can be obtained

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.



directly from our source code, which is freely available on the
Internet [8].

The songs in our database are all MIDI files, so they also
require some preprocessing before we perform our melody-
matching algorithm. To compute a string of 100 ms pitch frames
from a MIDI file, we consider each MIDI channel separately, and
find the note that is most contained in each time frame. If multiple
notes are found, we choose the one with the highest pitch. Also,
because note releases seem to be much less important perceptual
cues than note onsets, and because note releases are performed
inconsistently, we extend all notes to the beginning of the next
note, thereby eliminating rests in the melody. This mirrors the
technique of defining a note’s duration as the inter-onset time
used in almost all note-based melody matching algorithms.
Because the tempo of the query may not have exactly matched the
tempo stored in the MIDI file, we repeat this process with
different time scaling factors from 0.5 to 2.0, allowing for an
opportunity to match a hummed melody from half the speed up to
twice the speed.

At this point we have a string ofn pitches for the query, so
for every possible sequence of about2n frames from every
channel of our MIDI file, we match the query against the database
clip using a dynamic programming-based time-warping algorithm,
exactly the same as would be found in a limited-vocabulary
speech recognition system. To limit the amount of rhythmic
variation between the query and the song from the database, we
use abeam widthof n/10, ensuring that only paths that do not
stray too far from the straight diagonal are allowed. Finally, we
run this time warping algorithm 24 times, once for each possible
quartertone offset.

3. EXPERIMENTAL RESULTS
In order to compare our approach against other techniques

for melody retrieval, we collected a database of MIDI files in
different genres and recordings of various people humming
melodies from these MIDI files. We used the algorithm discussed
in the previous section to compare the query to each song in our
database and arrive at a distance between the query and each song.
We then ranked the songs according to distance, smallest first,
and looked at the rank of the intended song.

Our preliminary results were based on two small databases of
MIDI files, one containing 77 big band swing songs, and one
containing 18 Beatles songs. (For more recent results, see our
website.) Our results were quite promising. Out of Beatles song
queries, 9/11 times the correct song had a rank of one, and all 11
times the correct song appeared in the top three. Out of queries of
big band songs, 13/20 times the correct song had a rank of one,
and 16/20 times the correct song was in the top three. We also
implemented a number of more traditional matching algorithms
based on strings of discrete notes, and none of these performed as
well, mostly because they returned a large number of false
positives. The best note-based algorithm we implemented (which
incorporated both pitch and rhythmic information) only got the
correct song first 5/11 times for Beatles songs, and only got it in
the top three 8/11 times. For big band songs, the note-based
algorithm got the correct match first 5/20 times, and got it in the
top three 6/20 times. This does not mean that it would not be
possible for a better note-based algorithm to do much better, and
in fact we are making our queries and our database available to
any researchers who would like to try, but we feel that no

approach of this form is likely to outperform our frame-based
method unless there is a major breakthrough in melody
transcription software.

4. CONCLUSIONS AND FUTURE WORK
Our frame-based approach shows a lot of promise. It works

better than any note-based approach we were able to implement,
and more importantly, there are compelling reasons why one
would expect this approach to be more accurate.

In spite of these advantages, our approach is not perfect. One
potential problem is that singers may change pitch in the middle
of a query, and our approach does not currently deal with this as
well as an interval-based algorithm. Perhaps the biggest criticism
of our work is that it is clearly a brute-force approach and it is
very slow. Rather than move from dynamic programming toward
sub-linear retrieval algorithms suitable for large databases, we are
advocating strings that are much longer than the number of notes.
Our searches run orders of magnitude slower than typical note-
based searches, and as a result, this algorithm could not be used
by itself to drive a content-based music retrieval system.

Still, our approach could also be used behind the scenes to
improve faster algorithms: when our frame-based algorithm fails,
it is often because the query itself was not particularly good. Thus
a researcher could use our more robust algorithm to distinguish
between cases where the query was simply no good and cases
where a prototype algorithm failed for a different reason.

In the future we would like to improve the speed by using
two or more levels of refinement. We would begin with a fast but
imprecise algorithm to narrow the search to a small subset of the
database, then use successively more precise but more expensive
algorithms to arrive at the final result. In addition, we would like
to experiment with searching audio data instead of MIDI.

The authors would like to thank Kjell Lemstrom for
answering questions about SEMEX and providing some valuable
insight. This material is based upon work supported by NSF
Award #0085945, an IBM Faculty Partnership Award, and an
NSF Graduate Research Fellowship.

5. REFERENCES
[1] R.J. McNab, L. A. Smith, D. Bainbridge and I.H. Witten.

The New Zealand Digital Library MELody inDEX
(MELDEX). D-Lib Magazine, May 1997.

[2] A. Kornstädt. “Themefinder: A web-based melodic search
tool.” Computing in Musicology,v11, pp. 231-36, 1998.

[3] D. Huron et. Al.Themefinder(website).
http://www.themefinder.org/

[4] R. Typke.Tuneserver(website).
http://wwwipd.ira.uka.de/tuneserver/

[5] K. Lemström. “String Matching Techniques for Music
Retrieval.” Ph.D. thesis, University of Helsinki, Finland,
Nov., 1999.

[6] K. Lemström and S. Perttu. “SEMEX – An Efficient Music
Retrieval Prototype.”Proceedings of the ISMIR2000.

[7] T. Tolonen, M. Karjalainen. “A computationally efficient
multi-pitch analysis model.”IEEE Transactions on Speech
and Audio Processing, Vol. 8, No. 6, Nov. 2000.

[8] CMU Music group website:http://www.cs.cmu.edu/~music/


