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ABSTRACT 

We present a measure of the similarity of the long-term structure 
of musical pieces. The system deals with raw polyphonic data. 
Through unsupervised learning, we generate an abstract 
representation of music - the “texture score”. This “texture 
score” can be matched to other similar scores using a 
generalized edit distance, in order to assess structural similarity. 
We notably apply this algorithm to the retrieval of different 
interpretations of the same song within a music database. 
 
1. MOTIVATION 
Motivation for this system is our belief that a bird-eye-view of a 
song’s long-term structure is often a sufficient description for 
music retrieval purposes. In particular, our system doesn’t use 
any “transcription” information such as pitch or rhythm. Thus, it 
can deal with polyphonic music without the problem of 
instrument separation.  

A similar approach has already been illustrated by Foote in [1], 
where the author designs an algorithm to retrieve orchestral 
music based on the energy profiles. A drawback of his system is 
that it requires music with high dynamic variations. To address 
this problem, our approach is rather based on spectral variation: 
we uncover and match the succession over time of abstract 
“spectral textures”.   

 
2. REPRESENTATION 
A piece of polyphonic music can be viewed as the superposition 
of different instruments playing together, each with its own 
timbre. We call “texture“ the polyphonic timbre resulting of this 
superposition. For example, a piece of rock music could be the 
succession over time of the following textures: {drums}, then 
{drums + bass + guitar}, then {drums + bass}, then {drums + 
bass + guitar + voice}, etc…  

The front-end for our system is based on work done by the 
authors in [2]. The musical signal is first windowed into short 
30ms overlapping frames. For each of the frames, we compute 
the short-time spectrum. We then estimate its spectral envelope 
using Mel Cepstrum Coefficients [3]. A Hidden Markov Model 
(HMM) [4] is then used to classify the frames in an 
unsupervised way: it learns the different textures occurring in 
the song in terms of mixtures of Gaussian distributions over the 
space of spectral envelopes. The learning is done with the 
classic Baum-Welsh algorithm. Each state of the HMM accounts 
for one texture. Through Viterbi decoding, we finally label each 
frame with its corresponding texture. 

Our “texture score” representation is just the succession over 
time of the textures learned by the model (figure 1). It reveals 
much of the structure of the song: phrases succeed to phrases, 
common patterns are repeated every verse and chorus, 
instrument solos stand out clearly and echo the introduction and 
ending, etc. 

   
Figure 1: The texture score representation for a few seconds 

of music. 

One interesting property of this representation is that the 
spectral signification of the textures has been discarded by the 
HMM. The texture score of figure 1 could correspond to 
{drums} - {guitar + drums} - {guitar + drums + voice} -{guitar 
+ drums}, but could also well be {cello} - {cello + violin} - 
{cello + violin + voice} - {cello + violin}, etc. We only know 
about the succession of the textures, not about the textures 
themselves. We will use this property to match different 
interpretations of the same song (i.e. same long-term structure) 
which use different instrumentations (i.e. the spectral content of 
the textures is different). 
 
3. MATCHING 
In order to assess the structural similarity of pieces of music, 
we’ve designed an appropriate string-matching algorithm to 
compare texture scores. Each score is a simple string of digits 
out of a small alphabet: if we’ve identified 4 textures in the 
song, the score will be of the form …11221333441… out of the 
alphabet {1,2,3,4}.  

There are three issues that the string-matching algorithm needs 
to solve: 

- Noise: similar structures can differ quite a lot locally, so the 
matching can only be approximate. 

- Time Warping: two different performances with the same 
structure can have a different rhythm or expressivity 
(rubato…).  

- Permutations: the numeration of the textures by the front-
end is arbitrary. This means that a texture which is referred 
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to as “1” in one song, could be referred to as “3” in 
another. Therefore, the two strings “112133” and “331322” 
should be considered to be the same (as they differ only by 
the following permutation {(1,3), (2,1), (3,2)}). 

The first two issues are classically dealt with using dynamic 
programming to compute an edit distance (also called 
Levenshtein distance) [5]. It gives the minimal number of local 
transformations (insertion, deletion, substitution) needed to 
transform – or “edit”- one string into one other.  

However, the third issue has not received much coverage in the 
string matching literature. To avoid the brute force approach 
consisting of !n distance measures for all permutation of the 
alphabet, Baker in [6] suggests an interesting factorization 
method. Unfortunately, it is mainly designed for exact matching 
(without noise), and is also very dependent on the time scale.  

Our integrated solution to these three issues is a generalized edit 
distance, where we progressively adapt the cost of the each 
elementary substitution as the edit distance between two strings 
is computed. At the beginning of the process, we “charge” every 
substitution of one symbol into another, except the identity. By 
the end of the measure, the costs have changed to “learn” the 
best permutation between the two strings: we “charge” every 
substitution (including identity) except the ones corresponding 
to the permutation between the two strings. 
 
4. TWO APPLICATIONS 
4.1 Clustering covers of the same songs 
Figure 2 shows the texture scores for the beginning of two 
versions of the same song, with different instrumentations: the 
first one is a male singer and an accompaniment based on 
accordion; the second one has a female singer and violins. Since 
we have freed ourselves from these spectral differences by using 
the texture scores, we are able to notice that the two pieces show 
some similarity. We have applied our algorithm on a database 
containing different versions of different songs (notably 3 
versions of a French song from the 50’s by A. Bourvil, J. Greco 
and I. Aubret, 4 versions of a Bob Dylan tune, with acoustic or 
electric guitar, studio or live recording, etc.), and the results are 
encouraging: the edit distance between “covers” is generally 
small, and the distance between different songs is big, which 
allows us to cluster the different interpretations. 
 

 
Figure2: Comparison of the texture score representations of 

two different interpretations of the same song. 

4.2 Clustering songs of the same genre. 
We have also applied our algorithm to cluster a database 
containing acoustic blues (3 Robert Johnson tunes, 2 Son House 
and 2 Tommy Johnson), folk (4 songs by Nick Drake) and 
country pieces (4 songs by Woody Guthrie). As most of the 
blues tunes show a common phrase structure (AAB), we are able 
to gather and separate them from the other pieces. Once again, a 
bottom-up spectral approach can’t easily succeed in this task, 
since all the pieces contain mostly the same instrumentation 
(voice + guitar). 
 
5. CONCLUSION 
The texture score is a good representation to study the long-term 
structure of polyphonic musical signals. In the context of string 
matching, it provides an efficient retrieval tool to cluster songs 
with the same structure. Two applications are covers of the same 
tune, and pieces of the same “structural” genre. 

This tool is especially useful since it disregards the spectrum 
content of the signals. Obtaining the same assessment of 
structural similarity from the extraction of “transcription” 
features such as pitch, instrumentation and rhythm would 
actually require very sophisticated high-level knowledge. 

The generation of the texture score involves a machine-learning 
algorithm, which is quite intensive for a database application 
(processing a piece of music takes about real time), but once 
extracted, the score can be stored as metadata, and the retrieval 
can be performed in reasonable times (it is just an edit distance). 

Further work includes generating “cleaner” texture scores (for 
issues on the front-end, see [2]), and optimizing the computation 
of our generalized edit distance. The scheme still has to be 
tested on a large corpus of tunes and genres to measure a 
meaningful precision rate, but we believe that these results 
already show the relevance of this alternative approach to Music 
Retrieval.  
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