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ABSTRACT 
In this paper, we describe the Ultima project which aims to 
construct a platform for evaluating various approaches of music 
information retrieval. Three approaches with the corresponding 
tree-based, list-based, and (n-gram+tree)-based index structures are 
implemented. A series of experiments has been carried out. With 
the support of the experiment results, we compare the performance 
of index construction and query processing of the three approaches 
and give a summary for efficient content-based music information 
retrieval. 

1. Introduction 
With the growth of music objects available, it is getting more 
attention on the research of constructing music information 
retrieval systems. To provide an efficient and effective content-
based retrieval of music objects, various approaches have been 
proposed in which the music representations, index structures, 
query processing methods, and similarity measurement are key 
issues. 

Regarding the issue of music representation, several approaches 
are introduced to model various features of music content, such as 
pitch, rhythm, interval, chord, and contour. To efficiently resolving 
user queries, different kinds of techniques are proposed, including 
string matching methods, dynamic programming methods, n-gram 
indexing methods, and list-based and tree-based indexing 
structures with the corresponding traversal procedures. Most 
researchers present their solutions to the key issues separately. 
However, the research work focusing on the quantitative and 
qualitative comparison of various techniques used in music 
information retrieval is still limited. 

On the contrary, in the traditional information retrieval, the 
problems and techniques involved in the evaluation of retrieval 
systems and procedures have been investigated. The most common 
evaluation criteria have also been identified, such as precision and 
recall, response time, user effort, form of presentation, and 
collection coverage [18]. 

Due to the multi-faceted properties of music, there exist intrinsic 
difficulties for content-based music information retrieval (MIR). 
The framework of a formal MIR evaluation mechanism becomes 
necessary. The point is emphasized in [7], which states “a 
formalized set of MIR evaluation standards must become part of 
the MIR researcher toolkit” and “a set of music test databases of 
substantial size and varied content must be formed so that all MIR 
researchers can properly compare and contrast techniques under a 
variety of scenarios.” 

From the database point of view, we initiate the project of building 
a platform for the evaluation of music information retrieval 
systems. Considering the retrieval efficiency and effectiveness, we 
focus on the performance study of music representations, indexing 
and query processing which involve a wide range of techniques 
used in content-based music information retrieval. 

The rest of this paper is organized as follows. In Section 2, we 
describe our project for evaluating music information retrieval 
approaches. The issues of system design, data set, query set 
generation, and efficiency and effectiveness study are also 
introduced in this section. The three approaches implemented in 
our platform are described in Section 3. We perform a series of 
experiments and illustrate the experiment results and performance 
study in Section 4. Section 5 concludes this paper and points out 
our future directions. 

1.1 Related Work 
Selfridge-Field [19] provides a survey of clarifying and resolving 
conceptual and representational issues in melodic comparison. 
Research work on MIR systems are introduced as follows. Ghias, 
et al. [10] propose an approach for modeling the content of music 
objects. A music object is transformed into a string which consists 
of three kinds of symbols, ‘U’, ‘D’, and ‘S’ which represent a note 
is higher than, lower than, or the same as its previous note, 
respectively. The problem of music data retrieval is then 
transformed into that of approximate string matching. 

In [1][6], a system supporting the content-based navigation of 
music data is presented. A sliding window is applied to cut a music 
contour into sub-contours. All sub-contours are organized as an 
index structure for the navigation. Tseng [20] proposes a content-
based retrieval model for music collections. The system uses a 
pitch profile encoding for music objects and an n-gram indexing 
for approximate matching. A framework is also proposed in which 
the music objects are organized as an n-gram structure for efficient 
searching [22]. Different techniques of local alignment and local 
common subsequences have also been applied for comparison. 
Similar techniques of n-gram indexing have also been employed in 
[8][24][25]. Furthermore, Downie and Nelson [8] provide an 
effectiveness evaluation of an n-gram based MIR system by using 
statistical analysis. 

The work [17] focuses on music retrieval from a digital library in 
which dynamic programming is used to match melodic phrases. 
The issues of melody transcription and matching parameters are 
discussed and the trade-off between the matching criteria and 
retrieval effectiveness is shown. Also using dynamic programming, 
Lemstrom and Perttu [14] present a bit-parallel algorithm for 



efficiently searching melodic excerpts. In the bit-parallel 
processing, the whole table for dynamic programming need not be 
created, and thus it leads to a better performance. Clausen, et al. [5] 
design a web-based tool for searching polyphonic music objects. 
The applied algorithm is a variant of the classic inverted file index 
for text retrieval. A prototype is implemented and its performance 
is investigated. 

To develop a content-based MIR system, we have implemented a 
system called Muse [3][4][13]. In this system, various methods are 
applied for content-based music data retrieval. The rhythm, melody, 
and chords of a music object are treated as music feature strings 
and a data structure called 1D-List is developed to efficiently 
perform approximate string matching [13]. Moreover, we consider 
music objects and music queries as sequences of chords [4] and 
mubol strings [3]. A tree-based index structure is developed for 
each approach to provide efficient matching capability. In [3], we 
propose an approach for retrieving music objects by rhythm. 
Instead of using only melody [1][4][6][10][13] or rhythm of music 
data, we consider both pitch and duration information plus the 
music contour, coded as music segment, to represent music objects 
[2]. Two index structures, called one-dimensional augmented 
suffix tree and two-dimensional augmented suffix tree, are 
proposed to speed up the query processing. By specifying the 
similarity thresholds, we provide the capability of approximate 
music information retrieval. When considering more than one 
feature of music objects for query processing, we propose multi-
feature index structures [12]. With the multi-feature index, both 
exact and approximate search functions on various music features 
are provided. 

2. The Ultima Project  
The Ultima project is established with the goal to make a 
comprehensive and comparative assessment of various MIR 
approaches. Under the same environment and real data sets, a 
series of experiments can be performed to evaluate the efficiency 
and effectiveness of the MIR systems. Issues such as the threshold 
setting and the identification of most influential factors which 
dominates the system performance can be explored. Furthermore, 
heuristics for choosing appropriate representation schemes, 
indexing structures, and query processing methods when building 
an MIR system can be provided based on the performance study. 
The Ultima platform will be continuously maintained and served 
as the testbed whenever new approaches of content-based music 
information retrieval are proposed. 

2.1 System Design and Implementation 
The system is implemented as a web server, which runs on the 
machine of Intel Pentium III/800 with 1GB RAM on MS Windows 
2000 by JDK 1.3. For posing queries at the client end, we provide 
the ways of humming songs, playing the piano keyword, uploading 
MIDI files, and using the computer keyboard and mouse. The 
server end consists of a mediator, four modules, and a data store, 
as shown in Figure 1. The mediator receives user queries and 
coordinates with other modules. The music objects and the 
corresponding information, such as title, composer, and genre, are 
organized as standard MIDI files and relational tables, respectively. 
The summarization module aims to resemble and visualize query 
results. The query generation module aims to generate 
parameterized user queries for performance evaluation, as 
discussed in Section 2.3. The implementations of the two modules 
are not finished yet. The report module aims to monitor and assess 

the performance of the system, such as the elapsed time of query 
processing, space of indices, and precision and recall of the 
retrieved results. The query processing module aims to resolve 
queries from the client end or the query generation module. The 
query processing module is designed as a “container” to which 
each query processing methods can be “plugged-in”. Whenever a 
new method is proposed, it can be easily plugged into the module 
for performing experiments under the same environment. Currently, 
three methods are considered, i.e., 1D-List [13], APS [2] and APM 
[3] which will be further discussed in Section 3. 
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Figure 1: The function blocks of the server in the Ultima 
project. 

2.2 Data Set 
The testing data of music objects, from CWEB Technology, Inc., is 
a collection of 3500 single track and monophonic MIDI files. Most 
of them are pop music of Chinese and English songs in various 
genres. 

The average object size is 328.05 notes. When coding these objects 
in the mubol and music segment representations, the average 
object size is 78.34 (mubol) and 272 (segment), respectively. 
Based on the statistics of the CWEB dataset, we estimate that one 
mubol corresponds to 4.19 notes, and one music segment 
corresponds to 1.21 notes. The note count is defined as the number 
of distinct notes appearing in a music object. According to the 
MIDI standard, the alphabet size is 128. Therefore, the note count 
of every melody string is between 1 and 128. For the CWEB data 
set, the average note count is 13.46. Due to the space limitation, 
the histograms of the object size and note count of the CWEB data 
set are skipped. 

Moreover, when coding music objects by music segment, the 
distribution of segment pitch is shown in Figure 2. For the segment 
duration, most of its value is between 0 and 20 beats without any 
obvious clustering. 

2.3 Query Set Generation 
In the traditional information retrieval, there exist standard testing 
data, queries and the associated answers [9][23]. 
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Figure 2: The distribution of segment pitch values of CWEB 

data set. 
Therefore, a fair performance evaluation can be performed. 
However, there is no such kind of benchmarks dedicated to the 
MIR systems. In this project, we will also investigate a standard 
procedure for generating parameterized queries and the associated 
answers from a data set. With the variety of queries, the 
performance study will be more accurate. 

2.4 Efficiency and Effectiveness Study 
We design a series of experiments to evaluate the methods of 
indexing and query processing. Factors influencing the system 
performance are identified, such as query length, database size, and 
query approximation degree. The measurement of performance is 
based on memory usage, retrieved candidates and elapsed time for 
efficiency, and precision and recall for effectiveness. 

3. Description of the Three Approaches 
Instead of detailed procedures and algorithms, each approach is 
illustrated by an example to show the basic idea. The three 
approaches cover various methods of music representation, 
indexing, and query processing, as summarized in Table 1. Note 
that all the approaches support the functionality of exact, partial, 
and approximate matching. For simplicity, we only show an 
example of exact query processing. 

Table 1: The representations and indexing structures of the 
three approaches. 

Approach Representation Index structure 
APM Mubol (rhythm) (N-gram+tree)-based
1D-List Melody (pitch) List-based 

APS Music segment 
(pitch+duration) Suffix tree-based 

3.1 The APM Approach 
The rhythm information of music objects is coded as mubol strings. 
A mubol is a rhythmic pattern of a measure in a music object. A 
mubol string of a music object is the string of mubols which are 
determined by each measure of the music objects. For example, as 
shown in Figure 3(a), R1 is a mubol string of eight measures. The 
n-grams of R1, where n = 1, 2, 3, with the associated positions are 
listed in Figure 3(b). For example, the position “R1: 1,4,7” of the 
mubol in the first row of Figure 3(a) indicates the mubol appears in 
the first, forth, and seventh measure of R1. All the prefixes of an n-
gram can be found in the (n−1)-grams, (n−2)-grams, …, and 1-

grams. To efficiently process queries, the n-grams of mubol strings 
are organized as a tree structure, called L-tree. The tree height h of 
L-tree is the maximal n, i.e., h = 3 in our example. As shown in 
Figure 3(c), the nodes in level 1 of the tree indicate the first 
mubols of 1-grams, the nodes in level 2 indicate the second mubols 
of 2-grams, etc. Note that there are two kinds of links in L-tree, 
namely, solid link and dotted link. The internal nodes are 
connected with solid links, while the leaf nodes with the associated 
information are indicated by dotted links. 

The exact query processing is performed by a tree traversal of the 

L-tree. Suppose the query is  for exact searching. The 
query will be processed by traversing the L-tree in level-wise 
manner. When processing the first mubol of the query at level 1 of 

the L-tree, the node containing  is matched and its children 
will be reached for processing the next mubol. When processing 
the second mubol at level 2, those children (only one node in this 
example) will be compared to the second mubol. Since the node 

containing  is matched to the second mubol of the query 
string, the two children of this node will be reached for further 
processing. Moreover, all the mubols of the query string have been 
processed and only (R1:2,5) is the answer. 

The L-tree is a (n-gram+tree)-based index structure. In the 
approach of n-gram indexing, if the length of the query string is 
larger than n, the false match may happen. For the L-tree of tree 
height h, if the query length is larger than h, the query will be 
divided into subqueries and the intermediate answers with 
respective to each subquery will be merged and confirmed by the 
join processing. 

3.2 The 1D-List Approach 
In this approach, music objects are coded as melody strings. For 
example, there are two music objects M1 and M2 in the database. 
The melody strings of M1 and M2 are “so-mi-mi-fa-re-re-do-re-
mi-fa-so-so-so” and “do-mi-so-so-re-mi-fa-fa-do-re-re-mi”, 
respectively. 
To support efficient string matching, melody strings are organized 
as linked lists, as shown in Figure 4(a). For the notes of the same 
pitch in the melody strings, they are linked in an increasing order. 
Each node in the linked lists is of the form (x:y) which denotes the 
y-th note of the melody string of the x-th music object in the 
database. 

When a query Q = “do-re-mi” is specified, the lists involved in Q 
are retrieved with the two dummy nodes start and end as shown in 
Figure 4(b). Then, the exact query processing goes as follows. Let 
Ax be the first element of node A, and Ay be the second element of 
node A. For each pair of nodes (A, B) taken from two adjacent 
linked lists, if Ax = Bx and Ay+1 = By, we build an exact link from A 
to B, as shown in Figure 4(c). Also, we build an exact link from 
start to node F of the first list if F has an outgoing link, and from 
node L of the last list to end if L has an incoming link. By 
traversing the exact links from start to end, each path indicates a 
substring appearing in the melody string of the database and will 
be considered as a result. In our example shown in Figure 4(c), 
there exists only one path, which is denoted in bold-faced links, 
i.e., “start-(1:7)-(1:8)-(1:9)-end”. 



 

Figure 3: (a) A sample mubol string R1. (b) The table of n-grams associated with the corresponding positions. (c) The L-tree of the 
mubol string R1. 

 

3.3 The APS Approach 
For better readability, the representation, indexing, and query 
processing are separately described as follows. 
3.3.1 Representation of Music Objects 
Taking into account of music contour with note duration and pitch, 
the APS approach represents music objects by sequences of music 
segments. A music segment is a triplet which consists of the 
segment type and the associated duration and pitch information. 
There are four segment types defined to model the music contour, 

i.e., (type A), (type B), (type C), and (type 
D). Define the segment base as the horizontal part of a music 
segment. The beat information of a music segment is represented 
by the segment duration which is the number of beats in the 
corresponding segment base. The pitch information of a music 
segment is represented by the segment pitch which is the note 
number in the MIDI standard of the corresponding segment base 
minus the note number of the segment base of the previous 
segment base. For example, for the piece of music shown in Figure 
5, the corresponding representation as a sequence of music 
segments is shown in Figure 6. The music segment (A, 1, +1) 
indicates that it is a type A segment with the segment duration and 
segment pitch being 1 and +1, respectively. When coding by music 

segments, the first music segment and the last music segment are 
ignored due to lack of information to assign the segment type. 
Therefore, the music object of Figure 5 is represented by the 
sequence of (B,3,-3) (A,1,+1) (D,3,-3) (B,1,-2) (C,1,+2) (C,1,+2) 
(C,1,+1). In priori to describing the dedicated indexing structures 
for APS, we introduce a data structure named suffix tree. A suffix 
tree is originally developed for substring matching [11][15]. 

For example, Figure 7 shows the suffix tree of the string S 
= ”ABCAB”. Each leaf node (denoted by a box) corresponds to a 
substring starting at the position indicated in the node in S, and 
each link is labeled with a symbol α, where α ∈ ∑ ∪ {$}, ∑ is the 
alphabet of S and ‘$’ is a special symbol denoting end-of-string. 
As a result, all the suffixes, i.e., “ABCAB”, “BCAB”, “CAB”, 
“AB”, and “B”, are organized in the tree. For a query string, the 
matching processing is a typical tree traversal. For example, 
suppose that the query string is “AB”. We follow the leftmost path 
to the black node, and all leaf nodes descending from the black 
node are the results, i.e., the first and the forth position. 

 
Figure 5: A piece of music. 

(b) 

R1 = (a) 

(c)
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Figure 4: (a) The index structure of M1 and M2 for the 1D-List approach. (b) An example of exact query Q = “do-re-mi”. (c) The 
exact link and result of the query Q. 
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Figure 6: The corresponding sequence of music segments of the 

music object in Figure 5. 

3.3.2 Index Structures for Sequences of Music 
Segments 
In the following, we introduce two index structures for efficiently 
processing queries of music segments, i.e., the one-dimensional 
and two-dimensional augmented suffix trees. 

A one-dimensional augmented suffix tree (1-D AST, in short) is a 
suffix tree with the segment duration information being added to 
the edges. First, a suffix tree based on the sequences of the 
segment types is constructed. Each edge of the suffix tree refers to 
a symbol appearing in one or more positions in the sequence. For 
example, let the sequence of music segments be (A,2,+1) (B,5,-1) 
(C,1,+1) (A,3,+1) (B,3,-2). Using only the segment types, the 
suffix tree can be constructed as shown in Figure 7. The bold-faced 
edge in Figure 7 refers to the ‘B’ in the second and fifth position. 
Since the corresponding segment durations are 5 and 3, we attach 
the range of segment duration <min, max> = <3, 5> to the edge. 
This range can be used to filter out some results which cannot be 
answers during query processing. Figure 8 shows an example of a 
1-D AST. 

To exploit the filtering effect, the range <min, max> should be as 
compact as possible. For a given population of segment durations, 
such as {1, 2, 2, 3, 7, 8, 8}, two ranges <1, 3> and <7, 8> are 
better than one range <1, 8>. Thus, the edge should be split into 
two edges labeled with <1, 3> and <7, 8>. This method is called 
dynamic splitting. In some cases, however, if it is hard to find 
compact ranges from a given population, we may apply static 
splitting method by splitting a range into some predefined smaller 
ranges which can be obtained from the statistics of data set. 

The 2-D AST is an extension of the 1-D AST by attaching both 
segment duration and segment pitch information to the edge. 

3.3.3 Query Processing 
The query processing for the augmented suffix tree is called the 
thresholding-based matching, which is able to deal with both exact 
and approximate queries [2]. The approximation degree of the 
query is specified by means of thresholds. The exact queries can be 
considered as a special case with the thresholds being set to zero. 
For ease of illustration, we only show the processing of exact 
queries in the following. 

Based on the 1-D AST in Figure 8(b), given the query Q = (A,1,−) 
(C,2,−) (A,5,−), we find the music objects whose sequences of 
music segments contain Q. When processing queries against a 1-D 
AST, the segment pitch in the queries is not needed and denoted 
by ‘−‘. 

The tree traversal starts from the root node and goes as follows. 
When processing the first music segment (A,1,−), the edge A<1, 
1> is matched such that we reach the node N1. Then, when 
processing the second music segment (C,2,−), the edge C<1, 3> is 
satisfied because the duration of the music segment is covered by 
the range of the edge. For the last music segment (A,5,−), although 
the segment type of the two edges from node N2 is matched, the 
two edges are filtered out because the duration of the music 
segment is not covered by any ranges of the edges. Therefore, the 
processing terminates without any answer. Note that the results 
derived from this tree traversal are not necessary the answers to the 
query. Further verification of the results is required. 
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Figure 7: The suffix tree of the string S ==== “ABCAB”. 
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Figure 8: (a) An example of suffix tree. (b) The 1-D augmented 

suffix tree. 

4. The Efficiency Study 
In this section, we show the experiment results on the efficiency of 
the three approaches described in Section 3. For the APS approach, 
both 1-D AST and 2-D AST are implemented. For comparison, we 
also construct a suffix tree, denoted as ST, based on the segment 
types of music segment sequences. 

4.1 Index Construction 
The elapsed time and memory usage for constructing indices of the 
three approaches are illustrated as follows. For the APM approach, 
the tree height of L-tree is set to 6 in our experiments. As shown in 
Figure 9 and Figure 10, both the elapsed time and the memory 
usage of 1D-List are less than those of L-tree. This is because the 
construction of 1D-List is a simple process of transforming the 
melody strings to the linked lists, and the number of nodes in the 
1D-List is linear to the database size. 

The suffix tree-like data structures including the augmented suffix 
trees in the APS approach suffer from the space consumption. It is 
not reasonable to construct a full and complete augmented suffix 
tree just for handling the rare cases of extremely long-length 
queries. On the contrary, an augmented suffix tree with longer tree 
heights is beneficial to the efficiency of query processing. In our 
experiments, the tree height of augmented suffix tree is set to 4, 6, 
8, 10, and 12. We construct three indices of APS, i.e., ST, 1-D 
AST, and 2-D AST. As described in Section 3.3, we apply the 
static splitting method to divide the domain of duration into three 
ranges and the domain of pitch into two ranges. Obviously, the 
elapsed time and memory usage of the three indices ST, 1-D AST, 
and 2-D AST are increasing. We only show the construction of the 
2-D AST in Figure 11 and Figure 12, where ‘h_4’ indicates the 
tree height of four, ‘h_6’ indicates tree height of six, and so on. 
The elapsed time and memory usage in the cases of smaller tree 
heights are much less than the cases of larger tree heights.  

4.2 Exact Query Processing 
In the following, we discuss the efficiency of processing exact 
queries for the APM, 1D-Lst, and APS approaches. Factors of 
query length, number of objects, and tree height of indices of APS 
will be investigated. 
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Figure 9: Elapsed time vs. # of objects for index construction of 

APM (L-tree, h====6) and 1D-List. 
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Figure 10: Memory usage vs. # of objects for index 

construction of APM (L-tree, h====6) and 1D-List. 
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Figure 11: Elapsed time vs. # of objects for index construction 

of APS (2-D AST).  
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Figure 12: Memory usage vs. # of objects for index 

construction of APS (2-D AST). 
For the APM and 1D-List approaches, the factors of query length 
and number of objects are explored, as shown in Figure 13, Figure 
14, and Figure 15. Figure 13 shows the scalability of two 
approaches. The query length for 1D-List, denoted by |Qn|, is of 
twelve notes. Accordingly, the query length for APM, denoted by 
|Qm|, is of three mubols. Compared to the APM approach, the 1D-
List approach scales well as the number of music objects. 

Figure 14 and Figure 15 show the elapsed time versus query length 
of APM and 1D-List, where ‘obj_0.5K’ indicates five hundred 
music objects in the experiment, ‘obj_1.0K’ indicates one 
thousand objects, and so on. For the APM approach, as shown in 
Figure 14, the elapsed time decreases rapidly when processing 
queries of length from one to six. As processing queries of length 
seven, the elapsed time rises up substantially. In the experiment 
setting, the tree height of L-tree is six. As in Section 3.1, if the 
query is of length seven, it will be divided into two subqueries. As 
a result, two times of the L-tree traversal are required. In addition, 
the join processing also contributes extra elapsed time. For the 
queries of length from seven to thirteen, similar behavior can be 
observed. When processing queries of length from seven to twelve, 
the elapsed time decreases. As processing the queries of length 
thirteen, the elapsed time rises up again, and so on. For the 1D-Lsit 
approach, Figure 15 shows the elapsed time versus the query 
length. The elapsed time increases slightly for query lengths 
ranging from 1 to 10, and remains almost the same for longer 
queries. Since only the lists involved in the query are retrieved for 
building exact links, the elapsed time is linear to the query length.  

The elapsed time consists of the time for building links and 
traversing links. When dealing with shorter queries, the number of 
lists to be processed is small and the elapsed time increases slightly. 
When dealing with longer queries, although the number of lists to 
be processed increases, the number of answers to the query 
dramatically reduces such that the elapsed time remains almost the 
same. In our experiment, the number of answers is less than 2 for 
the query of lengths ranging from 16 to 64. 

For APS, factors of query length, number of objects, and tree 
height of the three indices are explored as follows. 

Figure 16 shows the scalability of APS with 1-D AST and 2-D 
AST of tree height of eight. The APS with ST is not included 
because of a much larger elapsed time under the same condition. 

Compared to the 1-D AST, the 2-D AST performs well as the 
number of objects increases. 
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Figure 13: Elapsed time vs. # of objects for query processing of 

APM (|Qm|====3, L-tree, h====6) and 1D-List (|Qn|====12). 
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Figure 14: Elapsed time vs. query length for query processing 

of APM (L-tree, h====6). 
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Figure 15: Elapsed time vs. query length for query processing 

of 1D-List. 
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Figure 16: Elapsed time vs. # of objects for query processing of 

APS (1-D AST and 2-D AST, |Qs|====8, h====8). 
Figure 17, Figure 18, and Figure 19 show the elapsed time versus 
query length for ST, 1-D AST, and 2-D AST, respectively. The 
curves in Figure 19 have a similar trend to the curves in Figure 14. 
However, for shorter queries ranging from one to eight music 
segments, such kind of trend is not obvious in APS. Two reasons 
are given as follows. In APM, leaf nodes are regarded as results, 
while leaf nodes of APS are just candidates for further 
confirmation. In addition, the number of leaf nodes retrieved in 
APS is much more than the one in APM. For example, after the 
tree traversal, there are four leaf nodes for four-mubol queries in 
APM, while there are 16968, 5429, 105 nodes for four-segment 
queries in APS with the index of ST, 1-D AST, and 2-D AST of 
tree height twelve, respectively. Post processing of a large number 
of candidates results in extra computation which smoothes the 
curves. 

The total elapsed time of query processing in APS consists of three 
parts, i.e., tree traversal, joining processing (if the query length is 
longer than the tree height), and post processing (for similarity 
computation). Among the three parts, the post processing 
consumes most of the elapsed time. For example, with the 2-D 
AST of tree height ten, the total elapsed time of processing a ten-
segment query is 811 milliseconds, where 10 milliseconds for tree 
traversal and 801 milliseconds for computing similarity. When 
processing queries whose length is longer than the tree height, the 
query will be divided into subqueries. The number of candidates 
will be reduced after the joining processing. However, our 
database of 3500 music objects is only of moderate size. No matter 
what the tree height is, the number of candidates does not change 
much. Therefore, the difference of the performance with various 
tree heights is not obvious in our experiments, as shown in Figure 
17, Figure 18, and Figure 19. We believe that, when dealing with 
much more music objects in databases, the influence of tree height 
will be revealed. 

For comparison, we show the elapsed time for different indices in 
Figure 20. The performance gain of 2-D AST is obvious because 
of substantial edge pruning and candidate reduction. 

In the following, we show the filtering effect of APS by applying 
1-D AST and 2-D AST. The number of candidates is the number 
of leaf nodes retrieved after tree traversal. The filtering effect is 
measured by the candidate reduction rate (CRR), which is defined 
as the ratio of the number of reduced candidates using 1-D AST or 
2-D AST to the number of candidates using ST. 

ST

ASTST

N
NNCRR   −=  

where NST denotes the number of candidates by applying ST and 
NAST denotes the one by 1-D AST or 2-D AST. 
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Figure 17: Elapsed time vs. query length for query processing 

of APS (ST, 3.5K objects). 
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Figure 18: Elapsed time vs. query length for query processing 

of APS (1-D AST, 3.5K objects). 
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Figure 19: Elapsed time vs. query length for query processing 

of APS (2-D AST, 3.5K objects). 



0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
query length (segment)

el
ap

se
d 

tim
e 

(s
ec

on
d) ST

1-D AST
2-D AST

 
Figure 20: Elapsed time vs. query length for comparison of 
query processing of APS using various indices (h====12, 3.5K 

objects). 
Higher reduction rates suggest better filtering effects. As shown in 
Figure 21, there are two kinds of curves with respect to the 
corresponding y-axis. The ‘ST’, ‘1-D AST’, and ‘2-D AST’ 
indicate the number of candidates applying the corresponding 
indices. The ‘R1D’ and ‘R2D’ indicate the CRR of the 
corresponding indices. 

For the 1-D AST, the CRR increases as the query length is less 
than 14, while the ratio decreases as the query length ranges from 
15 to 32. For the 2-D AST, since there are much fewer candidates, 
the CRR for the query lengths ranging from 1 to 24 is at least 80%. 
For the longer queries, the CRR is decreased to 67%. 

For shorter queries, the APS approaches with 1-D AST and 2-D 
AST get benefits through attaching the beat and pitch information. 
However, for longer queries, all the methods have fewer candidates 
such that the filtering effect decreases slightly. For example, as the 
query lengths range from 24 to 32, the number of candidates for 
ST, 1-D AST, and 2-D AST is 3, 1, and 1, respectively. In general, 
the filtering effect of 2-D AST is better than that of 1-D AST. 
Moreover, a significant reduction of the candidates can be 
achieved using our approaches as the query length is less than 14. 
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Figure 21: Reduction rate vs. query length for comparison of 

query processing of APS using various indices (h====12, 3.5K 
objects). 

4.3 Summary of the Experiment Results 
Following the comprehensive illustrations of the performance with 
respect to each approach, we summarize the experiment results for 
a comparison in Table 2. Four sets of query lengths for query 

processing are selected, i.e., 1, 2, 3, and 4 mubols for APM, 4, 7, 
10, and 12 notes for 1D-List, and 4, 8, 12, and 14 music segments 
for APS. 
For reference, we also implement the string matching methods, 
namely, STR_MAT_n, and STR_MAT_ms. STR_MAT_n is a 
standard string matching method using the indexOF function in 
Java, which can be used to compare melody strings. On the other 
hand, STR_MAT_ms is for comparing sequences of music 
segments, which match segment types, followed by a checking for 
segment duration and segment pitch.  

We summarize the experiment results as follows.  

First, the 1D-List approach is superior in terms of indexing and 
query processing. However, the melody string of 1D-List approach 
is coded as the string of pitch values (i.e., the note number in MIDI 
standard). If the MIR system is designed for end users and the 
query approximation is one of major concerns, 1D-List may not 
result in good effectiveness. If it is the case of exact searching from 
the bibliographic catalog, the 1D-List approach is suggested. 

Second, the APM outperforms the APS family. Two reasons are 
given as follows. The APS family needs an extra cost for post 
processing. In addition, the average number of branches of a tree 
node in L-tree is much more than that of AST. It results in fewer 
candidates of APM. Therefore, the elapsed time of APS family is 
more than that of APM. 

Third, constructing indices for the APS family is not always 
beneficial to query processing, especially when the query length is 
less than four music segments. For longer query lengths, the 
performance of 2-D AST is impressive, as shown in Figure 20 and 
Table 2. In addition, the performance difference between the 2-D 
AST with various tree heights is limited, as shown in Figure 17, 
Figure 18, and Figure 19. Therefore, for the APS family, we 
suggest using the 2-D AST of smaller tree heights. This is because 
the index size of 2-D AST substantially reduces when the tree 
height is smaller. For example, as shown in Figure 12, the index 
size of 2-D AST of tree height 12 is 774.46 MB, while that of tree 
height 10 is 461.57 MB.  

5. Conclusion 
In this paper, we describe the Ultima project which aims at 
building a platform for evaluating the performance of various 
approaches for music information retrieval. The issues of system 
design, query set generation, and performance study are discussed. 
The list-based, tree-based, (n-gram+tree)-based approaches are 
considered. Concerning the efficiency study, a series of 
experiments are conducted. The factors of database size, query 
length, tree height are investigated. We also provide a comparative 
study and summarization of the three approaches.  

Future work include a performance evaluation of retrieval 
effectiveness among these approaches. Also, various input 
methods, the summarization module, and the query generation 
module will be implemented. The dynamic programming-based 
approaches, which are not covered in this project yet, will be 
considered in the next stage. While more and more polyphonic 
music retrieval methods are proposed, we also plan to extend our 
project to build a database of polyphonic music objects for 
evaluating these methods. 

 



Table 2: The comparison of various approaches. 

Index Exact query processing(1)(2) (millisec.) 
Approach  
(|DB| = 3500) Size (MB) Time 

(sec.) 
|Qm| = 1 mubol 
|Qs| = 4 notes 
|Qn| = 4 segments

|Qm| = 2  
|Qs| = 7  
|Qn| = 8 

|Qm| = 3  
|Qs| = 10 
|Qn| = 12 

|Qm| = 4  
|Qs| = 12  
|Qn| = 14 

In average

APM (L-tree, h=6) 289.0 52.5 50.6 23.8 13.6 10.1 24.5 
1D-List 48.3 33.7 4.0 4.0 4.1 4.0 4.0 
STR_MAT_n N/A N/A 861.0 852.0 852.0 851.0 854.0 
APS (ST, h=12) 48.3 39.9 23767.0 9239.0 2899.0 1271.0 9294.0 
APS (1-D AST, h=12) 290.7 54.0 10882.0 1630.0 416.0 195.0 3280.1 
APS (2-D AST, h=12) 774.5 90.0 1570.0 244.0 96.0 9.0 479.8 
STR_MAT_ms N/A N/A 2974.0 2814.0 2794.0 2814.0 2849.0 
Note:  
(1) Qn, Qm, Qs indicate that queries are coded as melody strings for the 1D-List approach, mubol strings for the APM approach, 

and sequences of music segments for the APS approach, respectively.  
(2) |Qn|, |Qm|, and |Qs| indicate the length of queries in note, mubol, and music segment, respectively.  
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