
Building a Platform for Performance Study of Various
Music Information Retrieval Approaches

Jia-Lien Hsu and Arbee L.P. Chen
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

alpchen@cs.nthu.edu.tw

ABSTRACT
In this paper, we describe the Ultima project which aims to
construct a platform for evaluating various approaches of music
information retrieval. Three approaches with the corresponding
tree-based, list-based, and (n-gram+tree)-based index structures are
implemented. A series of experiments has been carried out. With
the support of the experiment results, we compare the performance
of index construction and query processing of the three approaches
and give a summary for efficient content-based music information
retrieval.

1. Introduction
With the growth of music objects available, it is getting more
attention on the research of constructing music information
retrieval systems. To provide an efficient and effective content-
based retrieval of music objects, various approaches have been
proposed in which the music representations, index structures,
query processing methods, and similarity measurement are key
issues.

Regarding the issue of music representation, several approaches
are introduced to model various features of music content, such as
pitch, rhythm, interval, chord, and contour. To efficiently resolving
user queries, different kinds of techniques are proposed, including
string matching methods, dynamic programming methods, n-gram
indexing methods, and list-based and tree-based indexing
structures with the corresponding traversal procedures. Most
researchers present their solutions to the key issues separately.
However, the research work focusing on the quantitative and
qualitative comparison of various techniques used in music
information retrieval is still limited.

On the contrary, in the traditional information retrieval, the
problems and techniques involved in the evaluation of retrieval
systems and procedures have been investigated. The most common
evaluation criteria have also been identified, such as precision and
recall, response time, user effort, form of presentation, and
collection coverage [18].

Due to the multi-faceted properties of music, there exist intrinsic
difficulties for content-based music information retrieval (MIR).
The framework of a formal MIR evaluation mechanism becomes
necessary. The point is emphasized in [7], which states “a
formalized set of MIR evaluation standards must become part of
the MIR researcher toolkit” and “a set of music test databases of
substantial size and varied content must be formed so that all MIR
researchers can properly compare and contrast techniques under a
variety of scenarios.”

From the database point of view, we initiate the project of building
a platform for the evaluation of music information retrieval
systems. Considering the retrieval efficiency and effectiveness, we
focus on the performance study of music representations, indexing
and query processing which involve a wide range of techniques
used in content-based music information retrieval.

The rest of this paper is organized as follows. In Section 2, we
describe our project for evaluating music information retrieval
approaches. The issues of system design, data set, query set
generation, and efficiency and effectiveness study are also
introduced in this section. The three approaches implemented in
our platform are described in Section 3. We perform a series of
experiments and illustrate the experiment results and performance
study in Section 4. Section 5 concludes this paper and points out
our future directions.

1.1 Related Work
Selfridge-Field [19] provides a survey of clarifying and resolving
conceptual and representational issues in melodic comparison.
Research work on MIR systems are introduced as follows. Ghias,
et al. [10] propose an approach for modeling the content of music
objects. A music object is transformed into a string which consists
of three kinds of symbols, ‘U’, ‘D’, and ‘S’ which represent a note
is higher than, lower than, or the same as its previous note,
respectively. The problem of music data retrieval is then
transformed into that of approximate string matching.

In [1][6], a system supporting the content-based navigation of
music data is presented. A sliding window is applied to cut a music
contour into sub-contours. All sub-contours are organized as an
index structure for the navigation. Tseng [20] proposes a content-
based retrieval model for music collections. The system uses a
pitch profile encoding for music objects and an n-gram indexing
for approximate matching. A framework is also proposed in which
the music objects are organized as an n-gram structure for efficient
searching [22]. Different techniques of local alignment and local
common subsequences have also been applied for comparison.
Similar techniques of n-gram indexing have also been employed in
[8][24][25]. Furthermore, Downie and Nelson [8] provide an
effectiveness evaluation of an n-gram based MIR system by using
statistical analysis.

The work [17] focuses on music retrieval from a digital library in
which dynamic programming is used to match melodic phrases.
The issues of melody transcription and matching parameters are
discussed and the trade-off between the matching criteria and
retrieval effectiveness is shown. Also using dynamic programming,
Lemstrom and Perttu [14] present a bit-parallel algorithm for

efficiently searching melodic excerpts. In the bit-parallel
processing, the whole table for dynamic programming need not be
created, and thus it leads to a better performance. Clausen, et al. [5]
design a web-based tool for searching polyphonic music objects.
The applied algorithm is a variant of the classic inverted file index
for text retrieval. A prototype is implemented and its performance
is investigated.

To develop a content-based MIR system, we have implemented a
system called Muse [3][4][13]. In this system, various methods are
applied for content-based music data retrieval. The rhythm, melody,
and chords of a music object are treated as music feature strings
and a data structure called 1D-List is developed to efficiently
perform approximate string matching [13]. Moreover, we consider
music objects and music queries as sequences of chords [4] and
mubol strings [3]. A tree-based index structure is developed for
each approach to provide efficient matching capability. In [3], we
propose an approach for retrieving music objects by rhythm.
Instead of using only melody [1][4][6][10][13] or rhythm of music
data, we consider both pitch and duration information plus the
music contour, coded as music segment, to represent music objects
[2]. Two index structures, called one-dimensional augmented
suffix tree and two-dimensional augmented suffix tree, are
proposed to speed up the query processing. By specifying the
similarity thresholds, we provide the capability of approximate
music information retrieval. When considering more than one
feature of music objects for query processing, we propose multi-
feature index structures [12]. With the multi-feature index, both
exact and approximate search functions on various music features
are provided.

2. The Ultima Project
The Ultima project is established with the goal to make a
comprehensive and comparative assessment of various MIR
approaches. Under the same environment and real data sets, a
series of experiments can be performed to evaluate the efficiency
and effectiveness of the MIR systems. Issues such as the threshold
setting and the identification of most influential factors which
dominates the system performance can be explored. Furthermore,
heuristics for choosing appropriate representation schemes,
indexing structures, and query processing methods when building
an MIR system can be provided based on the performance study.
The Ultima platform will be continuously maintained and served
as the testbed whenever new approaches of content-based music
information retrieval are proposed.

2.1 System Design and Implementation
The system is implemented as a web server, which runs on the
machine of Intel Pentium III/800 with 1GB RAM on MS Windows
2000 by JDK 1.3. For posing queries at the client end, we provide
the ways of humming songs, playing the piano keyword, uploading
MIDI files, and using the computer keyboard and mouse. The
server end consists of a mediator, four modules, and a data store,
as shown in Figure 1. The mediator receives user queries and
coordinates with other modules. The music objects and the
corresponding information, such as title, composer, and genre, are
organized as standard MIDI files and relational tables, respectively.
The summarization module aims to resemble and visualize query
results. The query generation module aims to generate
parameterized user queries for performance evaluation, as
discussed in Section 2.3. The implementations of the two modules
are not finished yet. The report module aims to monitor and assess

the performance of the system, such as the elapsed time of query
processing, space of indices, and precision and recall of the
retrieved results. The query processing module aims to resolve
queries from the client end or the query generation module. The
query processing module is designed as a “container” to which
each query processing methods can be “plugged-in”. Whenever a
new method is proposed, it can be easily plugged into the module
for performing experiments under the same environment. Currently,
three methods are considered, i.e., 1D-List [13], APS [2] and APM
[3] which will be further discussed in Section 3.

Data Store (MS Access)

SMF

M
ed

ia
to

r

Query Processing Module

Table

to the InternetSummarization Module

1D-List APS APM

Report Module

Query Generation Module

Figure 1: The function blocks of the server in the Ultima
project.

2.2 Data Set
The testing data of music objects, from CWEB Technology, Inc., is
a collection of 3500 single track and monophonic MIDI files. Most
of them are pop music of Chinese and English songs in various
genres.

The average object size is 328.05 notes. When coding these objects
in the mubol and music segment representations, the average
object size is 78.34 (mubol) and 272 (segment), respectively.
Based on the statistics of the CWEB dataset, we estimate that one
mubol corresponds to 4.19 notes, and one music segment
corresponds to 1.21 notes. The note count is defined as the number
of distinct notes appearing in a music object. According to the
MIDI standard, the alphabet size is 128. Therefore, the note count
of every melody string is between 1 and 128. For the CWEB data
set, the average note count is 13.46. Due to the space limitation,
the histograms of the object size and note count of the CWEB data
set are skipped.

Moreover, when coding music objects by music segment, the
distribution of segment pitch is shown in Figure 2. For the segment
duration, most of its value is between 0 and 20 beats without any
obvious clustering.

2.3 Query Set Generation
In the traditional information retrieval, there exist standard testing
data, queries and the associated answers [9][23].

0

30

60

90

120

150

-8
7~

-7
8

-6
7~

-5
8

-4
7~

-3
8

-2
7~

-1
8

-7
~2

13
~2

2

33
~4

2

53
~6

2

73
~8

2

93
~1

02

segment pitch value

of

 n
ot

e
(x

 1
00

0)

type A
type B
type C
type D

Figure 2: The distribution of segment pitch values of CWEB

data set.
Therefore, a fair performance evaluation can be performed.
However, there is no such kind of benchmarks dedicated to the
MIR systems. In this project, we will also investigate a standard
procedure for generating parameterized queries and the associated
answers from a data set. With the variety of queries, the
performance study will be more accurate.

2.4 Efficiency and Effectiveness Study
We design a series of experiments to evaluate the methods of
indexing and query processing. Factors influencing the system
performance are identified, such as query length, database size, and
query approximation degree. The measurement of performance is
based on memory usage, retrieved candidates and elapsed time for
efficiency, and precision and recall for effectiveness.

3. Description of the Three Approaches
Instead of detailed procedures and algorithms, each approach is
illustrated by an example to show the basic idea. The three
approaches cover various methods of music representation,
indexing, and query processing, as summarized in Table 1. Note
that all the approaches support the functionality of exact, partial,
and approximate matching. For simplicity, we only show an
example of exact query processing.

Table 1: The representations and indexing structures of the
three approaches.

Approach Representation Index structure
APM Mubol (rhythm) (N-gram+tree)-based
1D-List Melody (pitch) List-based

APS Music segment
(pitch+duration) Suffix tree-based

3.1 The APM Approach
The rhythm information of music objects is coded as mubol strings.
A mubol is a rhythmic pattern of a measure in a music object. A
mubol string of a music object is the string of mubols which are
determined by each measure of the music objects. For example, as
shown in Figure 3(a), R1 is a mubol string of eight measures. The
n-grams of R1, where n = 1, 2, 3, with the associated positions are
listed in Figure 3(b). For example, the position “R1: 1,4,7” of the
mubol in the first row of Figure 3(a) indicates the mubol appears in
the first, forth, and seventh measure of R1. All the prefixes of an n-
gram can be found in the (n−1)-grams, (n−2)-grams, …, and 1-

grams. To efficiently process queries, the n-grams of mubol strings
are organized as a tree structure, called L-tree. The tree height h of
L-tree is the maximal n, i.e., h = 3 in our example. As shown in
Figure 3(c), the nodes in level 1 of the tree indicate the first
mubols of 1-grams, the nodes in level 2 indicate the second mubols
of 2-grams, etc. Note that there are two kinds of links in L-tree,
namely, solid link and dotted link. The internal nodes are
connected with solid links, while the leaf nodes with the associated
information are indicated by dotted links.

The exact query processing is performed by a tree traversal of the

L-tree. Suppose the query is for exact searching. The
query will be processed by traversing the L-tree in level-wise
manner. When processing the first mubol of the query at level 1 of

the L-tree, the node containing is matched and its children
will be reached for processing the next mubol. When processing
the second mubol at level 2, those children (only one node in this
example) will be compared to the second mubol. Since the node

containing is matched to the second mubol of the query
string, the two children of this node will be reached for further
processing. Moreover, all the mubols of the query string have been
processed and only (R1:2,5) is the answer.

The L-tree is a (n-gram+tree)-based index structure. In the
approach of n-gram indexing, if the length of the query string is
larger than n, the false match may happen. For the L-tree of tree
height h, if the query length is larger than h, the query will be
divided into subqueries and the intermediate answers with
respective to each subquery will be merged and confirmed by the
join processing.

3.2 The 1D-List Approach
In this approach, music objects are coded as melody strings. For
example, there are two music objects M1 and M2 in the database.
The melody strings of M1 and M2 are “so-mi-mi-fa-re-re-do-re-
mi-fa-so-so-so” and “do-mi-so-so-re-mi-fa-fa-do-re-re-mi”,
respectively.
To support efficient string matching, melody strings are organized
as linked lists, as shown in Figure 4(a). For the notes of the same
pitch in the melody strings, they are linked in an increasing order.
Each node in the linked lists is of the form (x:y) which denotes the
y-th note of the melody string of the x-th music object in the
database.

When a query Q = “do-re-mi” is specified, the lists involved in Q
are retrieved with the two dummy nodes start and end as shown in
Figure 4(b). Then, the exact query processing goes as follows. Let
Ax be the first element of node A, and Ay be the second element of
node A. For each pair of nodes (A, B) taken from two adjacent
linked lists, if Ax = Bx and Ay+1 = By, we build an exact link from A
to B, as shown in Figure 4(c). Also, we build an exact link from
start to node F of the first list if F has an outgoing link, and from
node L of the last list to end if L has an incoming link. By
traversing the exact links from start to end, each path indicates a
substring appearing in the melody string of the database and will
be considered as a result. In our example shown in Figure 4(c),
there exists only one path, which is denoted in bold-faced links,
i.e., “start-(1:7)-(1:8)-(1:9)-end”.

Figure 3: (a) A sample mubol string R1. (b) The table of n-grams associated with the corresponding positions. (c) The L-tree of the
mubol string R1.

3.3 The APS Approach
For better readability, the representation, indexing, and query
processing are separately described as follows.
3.3.1 Representation of Music Objects
Taking into account of music contour with note duration and pitch,
the APS approach represents music objects by sequences of music
segments. A music segment is a triplet which consists of the
segment type and the associated duration and pitch information.
There are four segment types defined to model the music contour,

i.e., (type A), (type B), (type C), and (type
D). Define the segment base as the horizontal part of a music
segment. The beat information of a music segment is represented
by the segment duration which is the number of beats in the
corresponding segment base. The pitch information of a music
segment is represented by the segment pitch which is the note
number in the MIDI standard of the corresponding segment base
minus the note number of the segment base of the previous
segment base. For example, for the piece of music shown in Figure
5, the corresponding representation as a sequence of music
segments is shown in Figure 6. The music segment (A, 1, +1)
indicates that it is a type A segment with the segment duration and
segment pitch being 1 and +1, respectively. When coding by music

segments, the first music segment and the last music segment are
ignored due to lack of information to assign the segment type.
Therefore, the music object of Figure 5 is represented by the
sequence of (B,3,-3) (A,1,+1) (D,3,-3) (B,1,-2) (C,1,+2) (C,1,+2)
(C,1,+1). In priori to describing the dedicated indexing structures
for APS, we introduce a data structure named suffix tree. A suffix
tree is originally developed for substring matching [11][15].

For example, Figure 7 shows the suffix tree of the string S
= ”ABCAB”. Each leaf node (denoted by a box) corresponds to a
substring starting at the position indicated in the node in S, and
each link is labeled with a symbol α, where α ∈ ∑ ∪ {$}, ∑ is the
alphabet of S and ‘$’ is a special symbol denoting end-of-string.
As a result, all the suffixes, i.e., “ABCAB”, “BCAB”, “CAB”,
“AB”, and “B”, are organized in the tree. For a query string, the
matching processing is a typical tree traversal. For example,
suppose that the query string is “AB”. We follow the leftmost path
to the black node, and all leaf nodes descending from the black
node are the results, i.e., the first and the forth position.

Figure 5: A piece of music.

(b)

R1 = (a)

(c)

1:7 1:11:41:21:5

2:1 1:31:6

2:9 2:71:91:8

2:82:22:5

2:32:6

2:4

2:10

2:11 2:12

1:10 1:11

1:12

1:13

do re mi fa so la si

1:7 1:21:5

2:1 1:31:6

2:9 1:91:8

2:22:5

2:62:10

2:11 2:12

do re mi

start end 1:7 1:21:5

2:1 1:31:6

2:9 1:91:8

2:22:5

2:62:10

2:11 2:12

do re mi

start end

(a) (b) (c)

Figure 4: (a) The index structure of M1 and M2 for the 1D-List approach. (b) An example of exact query Q = “do-re-mi”. (c) The
exact link and result of the query Q.

note number

beat

60

62

65

64

67

(B, 3, -3)

(A, 1, +1)

(D, 3, -3)

(B, 1, -2)

(C, 1, +2)

(C, 1, +2)
(C, 1, +1)

Figure 6: The corresponding sequence of music segments of the

music object in Figure 5.

3.3.2 Index Structures for Sequences of Music
Segments
In the following, we introduce two index structures for efficiently
processing queries of music segments, i.e., the one-dimensional
and two-dimensional augmented suffix trees.

A one-dimensional augmented suffix tree (1-D AST, in short) is a
suffix tree with the segment duration information being added to
the edges. First, a suffix tree based on the sequences of the
segment types is constructed. Each edge of the suffix tree refers to
a symbol appearing in one or more positions in the sequence. For
example, let the sequence of music segments be (A,2,+1) (B,5,-1)
(C,1,+1) (A,3,+1) (B,3,-2). Using only the segment types, the
suffix tree can be constructed as shown in Figure 7. The bold-faced
edge in Figure 7 refers to the ‘B’ in the second and fifth position.
Since the corresponding segment durations are 5 and 3, we attach
the range of segment duration <min, max> = <3, 5> to the edge.
This range can be used to filter out some results which cannot be
answers during query processing. Figure 8 shows an example of a
1-D AST.

To exploit the filtering effect, the range <min, max> should be as
compact as possible. For a given population of segment durations,
such as {1, 2, 2, 3, 7, 8, 8}, two ranges <1, 3> and <7, 8> are
better than one range <1, 8>. Thus, the edge should be split into
two edges labeled with <1, 3> and <7, 8>. This method is called
dynamic splitting. In some cases, however, if it is hard to find
compact ranges from a given population, we may apply static
splitting method by splitting a range into some predefined smaller
ranges which can be obtained from the statistics of data set.

The 2-D AST is an extension of the 1-D AST by attaching both
segment duration and segment pitch information to the edge.

3.3.3 Query Processing
The query processing for the augmented suffix tree is called the
thresholding-based matching, which is able to deal with both exact
and approximate queries [2]. The approximation degree of the
query is specified by means of thresholds. The exact queries can be
considered as a special case with the thresholds being set to zero.
For ease of illustration, we only show the processing of exact
queries in the following.

Based on the 1-D AST in Figure 8(b), given the query Q = (A,1,−)
(C,2,−) (A,5,−), we find the music objects whose sequences of
music segments contain Q. When processing queries against a 1-D
AST, the segment pitch in the queries is not needed and denoted
by ‘−‘.

The tree traversal starts from the root node and goes as follows.
When processing the first music segment (A,1,−), the edge A<1,
1> is matched such that we reach the node N1. Then, when
processing the second music segment (C,2,−), the edge C<1, 3> is
satisfied because the duration of the music segment is covered by
the range of the edge. For the last music segment (A,5,−), although
the segment type of the two edges from node N2 is matched, the
two edges are filtered out because the duration of the music
segment is not covered by any ranges of the edges. Therefore, the
processing terminates without any answer. Note that the results
derived from this tree traversal are not necessary the answers to the
query. Further verification of the results is required.

1 4

A
B C

B C

C $

$
2 5

3

Figure 7: The suffix tree of the string S ==== “ABCAB”.

(a)

ro o t

A

C

A

(b)

ro o t

A < 1 ,1 >

C < 7 ,8 >C < 1 ,3 >

A < 7 ,8 > A < 3 ,4 >

N 1

N 2

Figure 8: (a) An example of suffix tree. (b) The 1-D augmented

suffix tree.

4. The Efficiency Study
In this section, we show the experiment results on the efficiency of
the three approaches described in Section 3. For the APS approach,
both 1-D AST and 2-D AST are implemented. For comparison, we
also construct a suffix tree, denoted as ST, based on the segment
types of music segment sequences.

4.1 Index Construction
The elapsed time and memory usage for constructing indices of the
three approaches are illustrated as follows. For the APM approach,
the tree height of L-tree is set to 6 in our experiments. As shown in
Figure 9 and Figure 10, both the elapsed time and the memory
usage of 1D-List are less than those of L-tree. This is because the
construction of 1D-List is a simple process of transforming the
melody strings to the linked lists, and the number of nodes in the
1D-List is linear to the database size.

The suffix tree-like data structures including the augmented suffix
trees in the APS approach suffer from the space consumption. It is
not reasonable to construct a full and complete augmented suffix
tree just for handling the rare cases of extremely long-length
queries. On the contrary, an augmented suffix tree with longer tree
heights is beneficial to the efficiency of query processing. In our
experiments, the tree height of augmented suffix tree is set to 4, 6,
8, 10, and 12. We construct three indices of APS, i.e., ST, 1-D
AST, and 2-D AST. As described in Section 3.3, we apply the
static splitting method to divide the domain of duration into three
ranges and the domain of pitch into two ranges. Obviously, the
elapsed time and memory usage of the three indices ST, 1-D AST,
and 2-D AST are increasing. We only show the construction of the
2-D AST in Figure 11 and Figure 12, where ‘h_4’ indicates the
tree height of four, ‘h_6’ indicates tree height of six, and so on.
The elapsed time and memory usage in the cases of smaller tree
heights are much less than the cases of larger tree heights.

4.2 Exact Query Processing
In the following, we discuss the efficiency of processing exact
queries for the APM, 1D-Lst, and APS approaches. Factors of
query length, number of objects, and tree height of indices of APS
will be investigated.

0

15

30

45

60

0 1000 2000 3000 4000
of objects

el
ap

se
d

tim
e

(s
ec

on
d)

1D-List
APM

Figure 9: Elapsed time vs. # of objects for index construction of

APM (L-tree, h====6) and 1D-List.

0

75

150

225

300

500 1000 1500 2000 2500 3000 3500
of objects

m
em

or
y

us
ag

e
(M

B)

1D-List
APM

Figure 10: Memory usage vs. # of objects for index

construction of APM (L-tree, h====6) and 1D-List.

0

25

50

75

100

0 500 1000 1500 2000 2500 3000 3500 4000
of objects

el
as

ps
ed

 ti
m

e
(s

ec
on

d)

h_4
h_6
h_8
h_10
h_12

Figure 11: Elapsed time vs. # of objects for index construction

of APS (2-D AST).

0

200

400

600

800

500 1000 1500 2000 2500 3000 3500

of objects

m
em

or
y

us
ag

e
(M

B)

h_4
h_6
h_8
h_10
h_12

Figure 12: Memory usage vs. # of objects for index

construction of APS (2-D AST).
For the APM and 1D-List approaches, the factors of query length
and number of objects are explored, as shown in Figure 13, Figure
14, and Figure 15. Figure 13 shows the scalability of two
approaches. The query length for 1D-List, denoted by |Qn|, is of
twelve notes. Accordingly, the query length for APM, denoted by
|Qm|, is of three mubols. Compared to the APM approach, the 1D-
List approach scales well as the number of music objects.

Figure 14 and Figure 15 show the elapsed time versus query length
of APM and 1D-List, where ‘obj_0.5K’ indicates five hundred
music objects in the experiment, ‘obj_1.0K’ indicates one
thousand objects, and so on. For the APM approach, as shown in
Figure 14, the elapsed time decreases rapidly when processing
queries of length from one to six. As processing queries of length
seven, the elapsed time rises up substantially. In the experiment
setting, the tree height of L-tree is six. As in Section 3.1, if the
query is of length seven, it will be divided into two subqueries. As
a result, two times of the L-tree traversal are required. In addition,
the join processing also contributes extra elapsed time. For the
queries of length from seven to thirteen, similar behavior can be
observed. When processing queries of length from seven to twelve,
the elapsed time decreases. As processing the queries of length
thirteen, the elapsed time rises up again, and so on. For the 1D-Lsit
approach, Figure 15 shows the elapsed time versus the query
length. The elapsed time increases slightly for query lengths
ranging from 1 to 10, and remains almost the same for longer
queries. Since only the lists involved in the query are retrieved for
building exact links, the elapsed time is linear to the query length.

The elapsed time consists of the time for building links and
traversing links. When dealing with shorter queries, the number of
lists to be processed is small and the elapsed time increases slightly.
When dealing with longer queries, although the number of lists to
be processed increases, the number of answers to the query
dramatically reduces such that the elapsed time remains almost the
same. In our experiment, the number of answers is less than 2 for
the query of lengths ranging from 16 to 64.

For APS, factors of query length, number of objects, and tree
height of the three indices are explored as follows.

Figure 16 shows the scalability of APS with 1-D AST and 2-D
AST of tree height of eight. The APS with ST is not included
because of a much larger elapsed time under the same condition.

Compared to the 1-D AST, the 2-D AST performs well as the
number of objects increases.

0

4

8

12

16

0 1000 2000 3000 4000

of objects

el
ap

se
d

tim
e

(m
illi

se
c.

)

1D-List
APM

Figure 13: Elapsed time vs. # of objects for query processing of

APM (|Qm|====3, L-tree, h====6) and 1D-List (|Qn|====12).

0

20

40

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
query length (mubol)

el
ap

se
d

tim
e

(m
illi

se
c.

)

obj_0.5K
obj_1.0K
obj_1.5K
obj_2.0K
obj_2.5K
obj_3.0K
obj_3.5K

Figure 14: Elapsed time vs. query length for query processing

of APM (L-tree, h====6).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 10 20 30 40 50 60 70
query length (note)

el
ap

se
d

tim
e

(m
illi

se
c.

)

obj_0.5K obj_1.0K
obj_1.5K obj_2.0K
obj_2.5K obj_3.0K
obj_3.5K

Figure 15: Elapsed time vs. query length for query processing

of 1D-List.

0

0.25

0.5

0.75

1

0 1000 2000 3000 4000

of objects

el
ap

se
d

tim
e

(s
ec

on
d) 2-D AST

1-D AST

Figure 16: Elapsed time vs. # of objects for query processing of

APS (1-D AST and 2-D AST, |Qs|====8, h====8).
Figure 17, Figure 18, and Figure 19 show the elapsed time versus
query length for ST, 1-D AST, and 2-D AST, respectively. The
curves in Figure 19 have a similar trend to the curves in Figure 14.
However, for shorter queries ranging from one to eight music
segments, such kind of trend is not obvious in APS. Two reasons
are given as follows. In APM, leaf nodes are regarded as results,
while leaf nodes of APS are just candidates for further
confirmation. In addition, the number of leaf nodes retrieved in
APS is much more than the one in APM. For example, after the
tree traversal, there are four leaf nodes for four-mubol queries in
APM, while there are 16968, 5429, 105 nodes for four-segment
queries in APS with the index of ST, 1-D AST, and 2-D AST of
tree height twelve, respectively. Post processing of a large number
of candidates results in extra computation which smoothes the
curves.

The total elapsed time of query processing in APS consists of three
parts, i.e., tree traversal, joining processing (if the query length is
longer than the tree height), and post processing (for similarity
computation). Among the three parts, the post processing
consumes most of the elapsed time. For example, with the 2-D
AST of tree height ten, the total elapsed time of processing a ten-
segment query is 811 milliseconds, where 10 milliseconds for tree
traversal and 801 milliseconds for computing similarity. When
processing queries whose length is longer than the tree height, the
query will be divided into subqueries. The number of candidates
will be reduced after the joining processing. However, our
database of 3500 music objects is only of moderate size. No matter
what the tree height is, the number of candidates does not change
much. Therefore, the difference of the performance with various
tree heights is not obvious in our experiments, as shown in Figure
17, Figure 18, and Figure 19. We believe that, when dealing with
much more music objects in databases, the influence of tree height
will be revealed.

For comparison, we show the elapsed time for different indices in
Figure 20. The performance gain of 2-D AST is obvious because
of substantial edge pruning and candidate reduction.

In the following, we show the filtering effect of APS by applying
1-D AST and 2-D AST. The number of candidates is the number
of leaf nodes retrieved after tree traversal. The filtering effect is
measured by the candidate reduction rate (CRR), which is defined
as the ratio of the number of reduced candidates using 1-D AST or
2-D AST to the number of candidates using ST.

ST

ASTST

N
NNCRR −=

where NST denotes the number of candidates by applying ST and
NAST denotes the one by 1-D AST or 2-D AST.

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
query length (segment)

el
ap

se
d

tim
e

(s
ec

on
d)

h_4
h_6
h_8
h_10
h_12

Figure 17: Elapsed time vs. query length for query processing

of APS (ST, 3.5K objects).

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
query length (segment)

el
ap

se
d

tim
e

(s
ec

on
d)

h_4
h_6
h_8
h_10
h_12

Figure 18: Elapsed time vs. query length for query processing

of APS (1-D AST, 3.5K objects).

0

3

6

9

12

15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
query length (segment)

el
ap

se
d

tim
e

(s
ec

on
d)

h_4
h_6
h_8
h_10
h_12

Figure 19: Elapsed time vs. query length for query processing

of APS (2-D AST, 3.5K objects).

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
query length (segment)

el
ap

se
d

tim
e

(s
ec

on
d) ST

1-D AST
2-D AST

Figure 20: Elapsed time vs. query length for comparison of
query processing of APS using various indices (h====12, 3.5K

objects).
Higher reduction rates suggest better filtering effects. As shown in
Figure 21, there are two kinds of curves with respect to the
corresponding y-axis. The ‘ST’, ‘1-D AST’, and ‘2-D AST’
indicate the number of candidates applying the corresponding
indices. The ‘R1D’ and ‘R2D’ indicate the CRR of the
corresponding indices.

For the 1-D AST, the CRR increases as the query length is less
than 14, while the ratio decreases as the query length ranges from
15 to 32. For the 2-D AST, since there are much fewer candidates,
the CRR for the query lengths ranging from 1 to 24 is at least 80%.
For the longer queries, the CRR is decreased to 67%.

For shorter queries, the APS approaches with 1-D AST and 2-D
AST get benefits through attaching the beat and pitch information.
However, for longer queries, all the methods have fewer candidates
such that the filtering effect decreases slightly. For example, as the
query lengths range from 24 to 32, the number of candidates for
ST, 1-D AST, and 2-D AST is 3, 1, and 1, respectively. In general,
the filtering effect of 2-D AST is better than that of 1-D AST.
Moreover, a significant reduction of the candidates can be
achieved using our approaches as the query length is less than 14.

0

50

100

150

200

1 3 5 7 9 11131517192123 25272931

query length (segment)

of

 c
an

di
da

te
s

(x
 1

00
0)

0

0.2

0.4

0.6

0.8

1

C
R

R
 (%

)

ST
1-D AST
2-D AST
R1D
R2D

Figure 21: Reduction rate vs. query length for comparison of

query processing of APS using various indices (h====12, 3.5K
objects).

4.3 Summary of the Experiment Results
Following the comprehensive illustrations of the performance with
respect to each approach, we summarize the experiment results for
a comparison in Table 2. Four sets of query lengths for query

processing are selected, i.e., 1, 2, 3, and 4 mubols for APM, 4, 7,
10, and 12 notes for 1D-List, and 4, 8, 12, and 14 music segments
for APS.
For reference, we also implement the string matching methods,
namely, STR_MAT_n, and STR_MAT_ms. STR_MAT_n is a
standard string matching method using the indexOF function in
Java, which can be used to compare melody strings. On the other
hand, STR_MAT_ms is for comparing sequences of music
segments, which match segment types, followed by a checking for
segment duration and segment pitch.

We summarize the experiment results as follows.

First, the 1D-List approach is superior in terms of indexing and
query processing. However, the melody string of 1D-List approach
is coded as the string of pitch values (i.e., the note number in MIDI
standard). If the MIR system is designed for end users and the
query approximation is one of major concerns, 1D-List may not
result in good effectiveness. If it is the case of exact searching from
the bibliographic catalog, the 1D-List approach is suggested.

Second, the APM outperforms the APS family. Two reasons are
given as follows. The APS family needs an extra cost for post
processing. In addition, the average number of branches of a tree
node in L-tree is much more than that of AST. It results in fewer
candidates of APM. Therefore, the elapsed time of APS family is
more than that of APM.

Third, constructing indices for the APS family is not always
beneficial to query processing, especially when the query length is
less than four music segments. For longer query lengths, the
performance of 2-D AST is impressive, as shown in Figure 20 and
Table 2. In addition, the performance difference between the 2-D
AST with various tree heights is limited, as shown in Figure 17,
Figure 18, and Figure 19. Therefore, for the APS family, we
suggest using the 2-D AST of smaller tree heights. This is because
the index size of 2-D AST substantially reduces when the tree
height is smaller. For example, as shown in Figure 12, the index
size of 2-D AST of tree height 12 is 774.46 MB, while that of tree
height 10 is 461.57 MB.

5. Conclusion
In this paper, we describe the Ultima project which aims at
building a platform for evaluating the performance of various
approaches for music information retrieval. The issues of system
design, query set generation, and performance study are discussed.
The list-based, tree-based, (n-gram+tree)-based approaches are
considered. Concerning the efficiency study, a series of
experiments are conducted. The factors of database size, query
length, tree height are investigated. We also provide a comparative
study and summarization of the three approaches.

Future work include a performance evaluation of retrieval
effectiveness among these approaches. Also, various input
methods, the summarization module, and the query generation
module will be implemented. The dynamic programming-based
approaches, which are not covered in this project yet, will be
considered in the next stage. While more and more polyphonic
music retrieval methods are proposed, we also plan to extend our
project to build a database of polyphonic music objects for
evaluating these methods.

Table 2: The comparison of various approaches.

Index Exact query processing(1)(2) (millisec.)
Approach
(|DB| = 3500) Size (MB) Time

(sec.)
|Qm| = 1 mubol
|Qs| = 4 notes
|Qn| = 4 segments

|Qm| = 2
|Qs| = 7
|Qn| = 8

|Qm| = 3
|Qs| = 10
|Qn| = 12

|Qm| = 4
|Qs| = 12
|Qn| = 14

In average

APM (L-tree, h=6) 289.0 52.5 50.6 23.8 13.6 10.1 24.5
1D-List 48.3 33.7 4.0 4.0 4.1 4.0 4.0
STR_MAT_n N/A N/A 861.0 852.0 852.0 851.0 854.0
APS (ST, h=12) 48.3 39.9 23767.0 9239.0 2899.0 1271.0 9294.0
APS (1-D AST, h=12) 290.7 54.0 10882.0 1630.0 416.0 195.0 3280.1
APS (2-D AST, h=12) 774.5 90.0 1570.0 244.0 96.0 9.0 479.8
STR_MAT_ms N/A N/A 2974.0 2814.0 2794.0 2814.0 2849.0
Note:
(1) Qn, Qm, Qs indicate that queries are coded as melody strings for the 1D-List approach, mubol strings for the APM approach,

and sequences of music segments for the APS approach, respectively.
(2) |Qn|, |Qm|, and |Qs| indicate the length of queries in note, mubol, and music segment, respectively.

Acknowledgment
We would like to thank the CWEB Technology, Inc., for sharing us
the data set used in our experiments.

References:
[1] Blackburn, S. & DeRoure, D. (1998). A tool for content-based

navigation of music. In Proc. of ACM Multimedia.
[2] Chen, A. L. P., Chang, M., Chen, J., Hsu, J. L., Hsu, C. H. &

Hua, S. Y. S. (2000). Query by music segments: An efficient
approach for song retrieval. In Proc. of IEEE Intl. Conf. on
Multimedia and Expo (ICME). New York.

[3] Chen, J. C. C. & Chen, A. L. P. (1998). Query by rhythm: An
approach for song retrieval in music databases. In Proc. of the
8th Intl. Workshop on Research Issues in Data Engineering,
(pp. 139-146).

[4] Chou, T. C., Chen, A. L. P., & Liu, C. C. (1996). Music
databases: Indexing techniques and implementation. In Proc.
of IEEE Intl. Workshop on Multimedia Data Base
Management System.

[5] Clausen, M., Engelbrecht, R., Mayer, D. & Smith, J. (2000).
PROMS: A web-based tool for searching in polyphonic music.

[6] DeRoure, D. & Blackburn, S. (2000). Content-based
navigation of music using melodic pitch contours. Multimedia
Systems, 8(3), Springer. (pp. 190-200).

[7] Downie, S. (2000). Thinking about formal MIR system
evaluation: Some prompting thoughts. Available on
http://www.lis.uiuc.edu/~jdownie/mir_papers/downie_mir_eva
l.html.

[8] Downie, S. & Nelson, M. (2000). Evaluation of a simple and
effective music information retrieval method. In Proc. of ACM
SIGIR, (pp. 73-80).

[9] Frakes, W. B. & Baeza-Yates, R. (1992). Information retrieval:
Data structures and algorithms, Prentice-Hall.

[10] Ghias, A., Logan, H., Chamberlin, D., & Smith, B. C. (1995).
Query by humming: Musical information retrieval in an audio
database. In Proc. of ACM Multimedia, (pp. 231-236).

[11] Gusfield, D. (1997). Algorithms on strings, trees, and
sequences. Cambridge University Press.

[12] Lee, W. & Chen, A. L. P. (2000). Efficient multi-feature index
structures for music data retrieval. In Proc. of SPIE

Conference on Storage and Retrieval for Image and Video
Databases.

[13] Liu, C. C., Hsu, J. L., & Chen, A. L. P. (1999). An
approximate string matching algorithm for content-based
music data retrieval. In Proc. of Intl. Conference on
Multimedia Computing and Systems (ICMCS’99).

[14] Lemstrom, K. & Perttu, S. (2000). SEMEX: An efficient
music retrieval prototype. In Proc. of Intl. Symposium on
Music Information Retrieval.

[15] McCreight, E. M. (1976). A space economical suffix tree
construction algorithm. Journal of Assoc. Comput. Mach., 23,
262-272.

[16] MIDI Manufactures Association (MMA), MIDI 1.0
Specification, http://www.midi.org/.

[17] McNab, R. J., Smith, L. S., Witten, I. H., & Henderson, C. L.
(2000). Tune retrieval in the multimedia library. Multimedia
Tools and Applications, 10(2/3), Kluwer Academic Publishers.

[18] Salton, G. & McGill, M. (1983). Introduction to modern
information retrieval. MaGraw-Hill Book Company.

[19] Selfridge-Field, E. (1998). Conceptual and representational
issues in melodic comparison. In Hewlett, W. B. & Selfridge-
Field E. (Ed.), Melodic similarity: Concepts, procedures, and
applications (Computing in Musicology: 11), The MIT Press.

[20] Tseng, Y. H. (1999). Content-based retrieval for music
collections. In Proc. of ACM SIGIR.

[21] Uitdenbogerd, A. & Zobel, J. (1998). Manipulation of music
for melody matching. In Proc. of the 6th ACM Intl.
Multimedia Conference, (pp. 235-240).

[22] Uitdenbogerd, A. & Zobel, J. (1999). Melodic matching
techniques for large music databases. In Proc. of the 7th ACM
Intl. Multimedia Conference, (pp. 57-66).

[23] Witten, I. H., Moffat, A., & Bell, T. C. (1994). Managing
gigabytes: compressing and indexing documents and images,
International Thomson Publishing company.

[24] Yanase, T. & Takasu, A. (1999). Phrase based feature
extraction for musical information retrieval. In Proc. of IEEE
Pacific Rim Conf. on Communications, Computers, and Signal
Processing.

[25] Yip, C. L. & Kao, B. (2000). A study on n-gram indexing of
musical features. In Proc. of IEEE ICME.

http://www.midi.org/

