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ABSTRACT 
In this paper, the problem of processing audio signals is addressed 
in the context of query-by-humming systems. Since singing is 
naturally used as input, we aim to develop a front end dedicated to 
the symbolic translation of voice into a sequence of pitch and 
duration pairs. This operation is crucial for the effectiveness of 
searching for music by melodic similarity. In order to identify and 
segment a tune, well-known signal processing techniques are 
applied to the singing voice. After detecting pitch, a novel post-
processing stage is proposed to adjust the intonation of the user. A 
global refinement is based on a relative scale estimated out of the 
most frequent errors made by singers. Four rules are then em-
ployed to eliminate local errors. This front end has been tested 
with five subjects and four short tunes, detecting some 90% of 
right notes. Results have been compared to other approximation 
methods like rounding to the nearest absolute tone/interval and an 
example of adaptive moving tuning, achieving respectively 74%, 
80% and 44% of right estimations. A special session of tests has 
been conducted to verify the capability of the system in detecting 
vibrato/legato notes. Finally, issues about the best representation 
for the translated symbols are briefly discussed. 

1. INTRODUCTION 
In the last few years, the amount of bandwidth for multimedia 
applications and the dimension of digital archives have been 
continuously growing, so that accessibility and retrieval of 
information are becoming the new emergency. In the case of 
digital music archive, querying by melodic content received a lot 
of attention. The preferred strategy has been the introduction of 
query-by-humming interfaces that enable even non-professional 
users to query by musical content. A number of different imple-
mentations has been presented since the first work by Ghias et al. 
[4] and a brief overview is introduced in the next section. In spite 
of this fact, the digital audio processing of an hummed tune has 
been tackled with naive algorithms or with software tools avail-
able on the market. This fact results in a poor performance of the 
translation from audio signals to symbols. Furthermore, previous 
query-by-humming systems can be hardly extended to handle 
sung queries (i.e. with lyrics) instead of hummed queries. 

The quality of a query-by-humming system is strictly connected to 
the accuracy of the audio translation. It is well known that the 
amount of musical pieces retrieved through a melody grows when 
the length of the query decreases [8, 12, 13, 22]. Employing 
representations like the 3-level contour will further lengthen the 
list of matched pieces. In the same time, we can not expect users 
to search through very long queries (more than twenty notes long) 
or to sing perfectly, without errors and approximations. Interval 
representations show another source of errors, since a misplaced 
note propagates to the contiguous one. Thus, an accurate transla-
tion of the input is surely a basic requirement for every query-by-
humming system. 

In this paper, we propose an audio front end for the translation of 
acoustic events into note-like attributes and dedicated to the 
singing voice. We will focus on the post-processing of the voice 
in order to minimize the characteristic errors of a singer. In other 
words, the audio processing will be conducted in a user-oriented 
way, that is, trying to understand the intention of the singer. This 
work follows the one presented in [5] where some preliminary 
work and experiments have been briefly illustrated. 

2. RELATED WORK  
There are many techniques to extract pitch information from audio 
signals, primarily developed for speech and then extended to the 
music domain. The detection of pitch from monophonic sources is 
well understood and can be easily accomplished through the 
analysis of the sampled waveform, the estimation of the spectrum, 
the autocorrelation function or the cepstrum method.  

Previous query-by-humming systems employed some basic pitch 
tracking algorithms with only little pre- and post- processing, if 
any. For example, Ghias et al. performed pitch extraction by 
finding the peak of the autocorrelation of the signal [4], McNab et 
al. employed the Gold-Rabiner algorithm [12], while Prechelt and 
Typke looked for prominent peaks in the signal spectrum [16]. 
Rolland et al. [19] applied an autocorrelation algorithm with 
heuristic rules for post-processing. Some works focused mainly 
on the matching and indexing stages of the query-by-humming, 
using software tools available on the market for the audio transla-
tion [3,7].  
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Figure 1. Architecture of the system developed. 

Outside of the Music Information Retrieval community, the analy-
sis of the singing voice constitutes an established research field, 
especially in the framework of voice analysis/re-synthesis. Typical 
examples are the voice morphing system by Loscos et al. [10], the 
structured audio approach to singing analysis score driven by Kim 
[6] and the synthesis of voice based on sinusoidal modeling by 
Macon et al. [11]. 

3. BACKGROUND 
Despite its monophonic nature, singing has proved to be difficult 
to analyze [21]. The time-varying spectral characteristics of voice 
are similar during speech and singing. In both cases, we can 
divide the generated sounds in voiced and unvoiced1. In order to 
have an approximate idea of this property, we can think of the 
former kind of sounds as consonants2 and the latter as vowels. 
Since voiced sounds are constituted by periodic waveform, they 
are easier to analyze, while unvoiced sounds have a state similar 
to noise. Luckily, during singing the voiced properties are pre-
dominant and contain what we call musical pitches. However, the 
information held by unvoiced regions are important as well, since 
they often contain the rhythmic aspect of the performance. Unlike 
speech, the singing voice shows a slowly-changing temporal 
modulation both in the pitch and in the amplitude (vibrato). In 
addition to these acoustic properties, singing voice analysis 
should deal with human performance that is typically affected by 
errors and unstable. Previous researches revealed that errors 
remain constant regardless of the note distance in time and in 
frequency [9]. We will follow these findings in the post-
processing step of the proposed front end. 

4. VOICE PROCESSING 
An audio front end for a query-by-humming/singing system 
should contain all the elements needed to perform the transforma-
tion from audio to symbols, where audio is the singing voice and 
symbols are the most likely sequences of notes and durations. It 
should be able to adapt to the user automatically, i.e. without any 
user-defined parameter settings. Further, it should not require a 
particular way of singing, like inserting some little pause between 
notes or following some reference musical scale or metronome. In 
a query-by-singing application, the last requirements are impor-
tant to avoid limiting the number of potential users, who are 
expected to be most non-professional users [5]. 

                                                                 
1 A more rigorous definition is the following: “speech sounds can 

be voiced, fricative (or unvoiced) and plosive, according to their 
mode of excitation” [18]. In the present paper, plosive and 
fricative sounds will be grouped into the unvoiced category. 

2 with the exception of [m][n][l] which are voiced. 

We suggest to elaborate the audio signal at three different levels 
of abstraction, each one with a particular set of operations and 
suitable approximations: 

1- event  

2- block  

3- frame  

At the event level, we estimate starting/ending points of musically 
meaningful signal, signal gain and, as a last step of computation, 
pitches and durations. At the block level, a background noise 
threshold is determined, voiced-unvoiced segments are isolated 
and pitches are approximated; eventually, effects of vibrato or 
bending are eliminated. At a frame level, we estimate spectrum, 
zero crossing rate, RMS power and octave errors. From the above 
observations, we derived an architecture (Figure 1) in which every 
uncertainty about the audio signal is resolved with subsequent 
approximations. The elaboration path is divided into three stages; 
details of each stage are presented in the following sections. The 
system developed is designed for offline voice processing and is 
not currently developed for real-time operations. Thus, audio is 
captured from a microphone, stored as wave file with sampling 
frequency of 44100 samples/sec and 16 bit of quantization, and 
then analyzed.  

4.1 Pre-Processing 
The first purpose of the audio front end is to estimate the 
background noise. We evaluate the RMS power of the first 60 
msec. of the signal; a threshold for the Signal/Noise discrimina-
tion is set to a value of 15% above this level (S/N threshold). If 
this value is above –30dB, the user is asked to repeat the 
recording in a less noisy room. Otherwise, two iterative processes 
begin to analyze the waveform, one from the beginning and 
another from the end. Both the processes perform the same 
algorithm: the RMS power of the signal is calculated for frame 
440 samples long (about 10 msec.) and compared with the S/N 
threshold. To avoid the presence of ghost onsets caused by 
impulsive noise, the value of the n-th frame is compared to the 
(n+4)-th. The value of 40 msec. is too long for such noise and it is 
not enough to skip a true note. The forward and backward analy-
sis are then composed giving respectively a first estimate of the 
onset and offset points. The fragments of signal between each 
onset and offset represent the musically meaningful events.  

Before localizing voiced and unvoiced regions, we calculate the 
derivative of the signal normalized to the maximum value, so that 
the difference in amplitude is emphasized. This way, it will be 
easier detecting the voiced consonants since their energy is most 
likely to be lower than the energy of vowels. A well-known tech-
nique for performing the voice/unvoiced discrimination is derived 
from speech recognition studies and relies on the estimation of the 
RMS power and the Zero Crossing Rate [1, 18]. Plosive sounds 
show high values of zero crossing rate because the spectral energy 
is almost distributed at higher frequencies. Mean experimental 



Figure 3. The proposed pitch-tracking stage; pitch detection is followed by a quantization step in 
which median approximation, vibrato suppression and legato detection are applied. The output is 
a sequence of pitches and durations. 

 

Hamming 
(46 msec) 

FFT Peak Detection Median 
(~120 msec) 

Voiced 
regions 

Event 
Boundaries 

Shift (23 msec) 

Octave 
Error Check 

Vibrato 
Detection 

Legato & split 
events 

Boundaries 
Determination 

Notes 
(pitch-duration) 

Pitch 
Decision 

Figure 2. The pre-processing stage of the system developed. An audio signal given in input is 
segmented into musically meaningful events. Each event is characterized by its location in time 
(event boundaries) and by its voiced region. 
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values of average number of zero crossings are 49 for unvoiced 
sounds and 14 for voiced sounds in a 10 msec window. The task 
is not trivial for other speech utterance like weak fricatives. A 
better technique employs mean and standard deviation of the 
RMS power and zero-crossing rate of both background noise and 
signal as thresholds. Moreover, heuristic rules about the maxi-
mum duration admitted for each utterance are used. For example, 
events longer than 260 msec can not be unvoiced. These methods 
are applied to the derivative of the signal, detecting voiced conso-
nants, unvoiced sounds and vowels. Thanks to this procedure, we 
can refine the on/offset estimation. In Figure 2 the process 
explained so far is illustrated. 

4.2 Pitch-Tracking 
As we said, the pitch of a sung note is captured by its voiced 
region and in particular by vowels. Thus, we will estimate pitch 
only on those fragments. Compared to unvoiced sounds, voiced 
sounds exhibit a relatively slowly-changing pitch. Thus, the frame 
size can be widen. For each voiced fragment identified in the 
segmentation step discussed above, the signal is divided into half-
overlapping Hamming windows of 46 msec (2048 samples) (see 
Figure 3). A FFT algorithm is performed for each frame and the 
most prominent peaks of the estimated spectrum are passed to the 
next step. Here, it is taken the decision of pitch at the frame level. 
The algorithm is a simplified version of the one presented in [15]. 
The basic rule is quite simple: the candidate peak centered at a 
frequency in the range 87 Hz – 800 Hz that clearly shows at least 
two overtones is the fundamental frequency. Then, fundamental 
frequencies within an event are mediated along each three subse-
quent frames (median approximation) and are checked for octave 
errors. A group of four contiguous frames with similar funda-
mental frequencies constitutes a block. This further level of 

abstraction is needed to look for vibrato and legato (with 
glissando), which are slowly changing modulations in pitch and in 
amplitude. In the case of singing, vibrato is a regular modulation 
with rate of 4/7 Hz (i.e. with a 150/240 msec period or about 1/2 
blocks) and depth between 4% and 15% [14, 20]. Legato is 
detected when adjacent blocks have pitches more than 0.8 semi-
tones apart. This former case is resolved generating two different 
events; otherwise, the adjacent blocks are joint to form an event. 
For each event, pitch values are set to the average of the pitches of 
the constituting blocks. These information are gathered with the 
relative positions of consonants and the exact bounds of each note 
are estimated. 

4.3 Post-Processing 
The most critical stage is the post processing where the informa-
tion captured by earlier stages are interpreted as pitch and dura-
tion. The intonation of the user is rarely absolute3 and the 
transcription process has to take into account a relative musical 
scale. Pitches are measured in fraction of semitones to improve 
the importance of the relative distance between tones in the frame 
of the tempered musical scale. We use the definition of MIDI 
note; the number resulting from the following equation is rounded 
off to three decimal places: 

                                                                 
3 Only about 1 in 10,000 people claim to have tone-Absolute 
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Figure 4. The post-processing stage of the system; the sequence of notes estimated in the previous stages is adjusted 
by means of a relative scale and four local rules. The definitive tune is given in output. 
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Figure 5. Example of calculation of the reference deviation (in bold style). The deviations (right) within the highest bin (left) are 
averaged. 

where f0  is the frequency in Hertz associated to the MIDI note 
zero, that is: 

 

To our knowledge, only Mcnab et al. [12] introduced a procedure 
to adjust the scale during transcription. They used a constantly 
changing offset, initially estimated by the deviation of the sung 
tone from the nearest tone on the equal tempered scale. The 
resulting musical scale is continuously altering the reference 
tuning, in relation to the previous note. They relied on the 
assumption that singers tend to compress wide leaps and expand 
sequences of smaller intervals, suggesting that errors accumulate 
during singing. On the contrary, in this work we assume to deal 
with constant sized errors in accordance with the experiments 
conducted by Lindsay [9].  

The tune estimated by the pitch-tracking is adjusted by means of 
three different steps: estimation of a reference deviation, scale 
adjustment and local refinement (Figure 4). The construction of a 
relative scale is based on the following idea: every singer has its 
own reference tone in mind and he/she sings each note relatively 
to the scale constructed on that tone. There are two important 
consequences: errors do not propagate during singing and are 
constant, apart some small increases with the size of the interval. 
These observations suggest to look for the reference tone of the 
singer through the estimation of his/her most frequent deviations 
from any given scale. In order to estimate the reference value for 
the construction of a relative scale, the semitone is divided into 
ten overlapping bins, each one being 0.2 semitone wide with an 
overlapping region of 0.1 semitone. We compute the histogram of 
the deviations from an absolute scale, which are the decimal digits 

of the estimated MIDI notes. The mean of the deviations that 
belong to the maximum bin is the constant average distance in 
semitones from the user’s reference tone. Thus, the scale can be 
shifted by this estimated amount. An example is illustrated in 
Figure 5. 

With the relative scale just introduced, we achieved results always 
better than rounding to the nearest MIDI note or implementing the 
algorithm by McNab et al. [12] (see next section for quantitative 
results). It is worth noting that the minimization of error has been 
obtained out of the whole performance of a singer. A further 
refinement is possible considering some local rules. When the 
reference deviation is between 0.15 and 0.85 semitones or there is 
more than one maximum bin in the histogram, the approximation 
introduced by the relative scale could be excessive. In particular, 
notes that have a deviation from 0.3 to 0.7 semitones on the rela-
tive scale are said to be critical. In this case, other four hypothetic 
melodies are considered; they reflect the following assumptions: 

• a singer tends to correct its intonation from a note to the 
following one. 

• some singers show a stable, even if slight, sharp or flat 
tuning with larger intervals (5 semitones and higher). 

• rounded off absolute pitches and rounded intervals can 
further adjust an imperfect intonation 

A very simple rule allows to remove single-note mistakes. The 
rounded melody on the relative scale is compared with the ones 
just calculated: a note n on the relative scale is replaced by the nth 
value given by three of the four representations above, when this 
value is the same in the three.  

Hzf 1758.8
2

440
12690 ≅= Eq. 2 



5. REPRESENTATION ISSUES 
The proposed front end can translate an acoustic input into a 
sequence of symbols represented by MIDI note numbers and 
durations in absolute time (milliseconds). This representation 
could not be best suited for querying by melodic content because 
it is not invariant to transpositions and different tempi. Musical 
intervals are the most likely representation for searching by 
similarity, as it is normally implemented by current query-by-
humming systems. Since we expect to have a good approximation 
of the absolute pitches for each note, intervals can be naturally 
obtained as difference between a pitch value and the previous one.  

A different matter concerns the rhythmic information, for which 
an acceptable representation is not known. Singers are likely to 
make great approximations on tempo, probably larger than the 
errors introduced by an imperfect estimation of note boundaries. 
Thus, the introduction of a stage for tempo quantization should be 
encouraged. For example, the measured lengths in msec of each 
note event could be smoothed by means of a logarithmic function. 
We suggest to use the following definition that is invariant to 
different tempi:  









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




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The alphabet is constituted by integers in the range [–10÷10]; for 
instance, the value 6 corresponds to the transition from a sixteenth 
note to a quarter note and –6 is the reverse transition; equal length 
transitions are represented by the symbol 0. Since it leads to a 
very detailed description of rhythm, this definition can be easily 
relaxed for handling approximate or contour-based representation 
of durations.  

6. EXPERIMENTAL RESULTS 
The audio front-end illustrated in section 4 has been implemented 
in Matlab code and Java applet. The first prototype allowed us to 
adjust a proper set of parameters, while the second one has been 
employed with human subjects. The Java applet provides a 
graphical interface that allows users to record their voice through 
the sound card and to store it as a wave file. The recorded audio 
can be tracked and the translation can be stored as midifile or 
played. The system produces two warnings in case of too low or 
too high recording gain. Input and output gain can be easily 
adjusted by means of two sliders. The audio waveform and a 
graphical representation of the melody are given in output on the 
screen (see Figure 6). 

Five subjects were asked to participate to the experiment. None of 
them was a musician or experienced singer, although they 
declared to feel themselves inclined to sing. Three subjects were 
male and two were female. The subjects sung in the tonality they 
preferred but without lyrics (i.e. singing ‘na-na’, ‘ta-ta’, ‘pa-pa’), 
simulating a query-by-humming session at home. The choice of 
removing lyrics was suggested to take out another possible source 
of errors that is difficult to quantify. Note segmentation is too 
much dependent on the way users remember the metric of a song. 
The experiment has been conducted in a non acoustically treated 
room, thus, in medium noisy condition. The audio card was a 
Creative Sound Blaster Live and the microphone was a cheap 
model by Technics.  

Four simple melodies were chosen among the ones that the 
subjects proved to remember very well. The knowledge of the 
melodies doesn’t hold a particular importance; it assures the 
equivalence of the tunes to be evaluated. After the recording 
sessions, a musician was asked to transcribe the melodies sung by 
all the subjects without taking care of his memory of the melodies. 
The aim was to keep as much as possible of the original intention 
of the singers, and not their ability in remembering a music 
fragment. A different interpretation occurred only with a subject 
in three ending notes of a tune, but the same amount of notes has 
been sung and rhythm has been preserved; for this reason, that 
performance was included in the test. The transcriptions constitute 
the reference melodies for the evaluation of the front end. Each 
tune has been chosen for testing a particular block of the system. 
The main characteristics of each melody are described in the 
following: 

§ Melody number 1: three legato notes (with bending) 

§ Melody number 2: three sustained notes 

§ Melody number 3: very long, but well-known as well, 
sequence of notes (28 notes) 

§ Melody number 4 (“Happy Birthday”): well-known tune 
always sung in a different key 

For each tune, the output of the front end is compared with the 
transcriptions by the musician. Each different pitch accounts for 
an error. In the case of round-interval tunes, the comparison has 
been made on the transcribed intervals. For the evaluation of the 
estimated durations, we consider only segmentation errors (i.e. a 
note split into two or more notes and two or more notes grouped 
into a note).  

Eq. 3 

Figure 6. Screen capture of the applet Java developed 
running in Netscape Navigator. It is illustrated an example 
of the translation of melody 1 (MIDI note on vertical axis; 
value 0 indicates pauses; value 5 represents silence). 



ALL SUBJECTS Round 
MIDI 

Moving 
Tuning 

Round 
Intervals 

Proposed 
without 

local 
rules 

Proposed 
with local 

rules 

Melody 1 (13 notes) 15 38 7 5 3 

Melody 2 (8 notes) 4 15 4 3 3 

Melody 3 (28 notes) 38 89 34 24 21 

Melody 4 (12 notes) 19 30 8 8 4 

      

ALL MELODIES      

Subject 1 22 26 12 8 10 

Subject 2 9 42 8 8 5 

Subject 3 14 35 12 8 6 

Subject 4 17 32 10 6 3 

Subject 5 14 37 11 10 7 

Average Error (%) 24.9% 56.4% 17.4% 13.1% 10.2% 

 

Table 1-2. Comparison of different methods for approximating 
an estimated tune. With the exception of the last row, values 
indicate the absolute number of wrong notes.  

Variance Dev. 
Round MIDI 

0.134 

Reference Dev. 
Melody 

0.625 

 
Variance Dev. 
Adjusted Mel. 

0.036 

 

Actual Melody 56 56 58 56 61 60 56 56 58 56 63 61 

Sung Melody 56.693 56.623 58.328 56.628 61.255 60.872 56.423 56.435 58.286 56.644 63.352 61.537 

Round-MIDI 
Melody 

57 57 58 57 61 61 56 56 58 57 63 62 

Dev. Round-
MIDI  Melody 

-0.307 -0.377 0.328 -0.372 0.255 -0.128 0.423 0.435 0.286 -0.356 0.352 -0.463 

Adjusted 
Melody 

56.068 55.998 57.703 56.003 60.63 60.247 55.798 55.81 57.661 56.019 62.727 60.912 

Round 
Adjusted Mel. 

56 56 58 56 61 60 56 56 58 56 63 61 

Dev. Adjusted 
Melody 

0.068 -0.002 -0.297 0.003 -0.37 0.247 -0.202 -0.19 -0.339 0.019 -0.273 -0.088 

Rounded 
Intervals 

 0 2 -2 5 0 -4 0 2 -2 7 -2 

Moving Tuning 57 56 58 57 62 61 56 56 58 57 63 62 

 

Table 4. Approximation of melody 4 (first twelve notes of “Happy Birthday”); actual notes come from the transcription by a musician. 
Sung melody represents the sequence of pitches given in output by the second stage of the front end.  

Tests have been carried out with different approximation methods 
for a direct comparison of the proposed one with the following: 
rounded midi note, McNab’s moving tuning [12] and rounded 
intervals. The proposed method has been also tested without local 
rules (see Section 4.3), in order to assess their contribution. 
Results are illustrated in Table 1 and 2, ordered respectively by 
melody and by subject and without considering segmentation 
errors. In Table 3 the overall error rates (with segmentation errors) 
are summarized. 

As previously noticed, the relative scale introduced in this work is 
always better than any other approximation method. The moving 
scale developed by McNab et al. [12] has the worst performance 
(56.4% of wrong approximations), confirming that errors do not 
accumulate. Rounding to the nearest tone on an absolute scale 
(round-MIDI) lead to an error in 26.6% of the sung notes, 

showing a performance comparable to the proposed method only 
in the second melody. Here, the deviations from the MIDI scale 
are close to zero, thus indicating the simple round as a valid 
approximation. The round-interval tunes perform better as 
expected (17.4% of wrong approximated notes), since it confirms 
the previous work by Lindsay [9]. However, the segmentation 
errors have an unwanted side effect on intervals, since a single 
error propagates. Thus, the overall error rates increase more than 
the number of the segmentation errors, going from 17.4% of 
wrong pitches to 20.3% of wrong notes (pitch and segmentation). 

The introduction of the four local rules bring some benefits, in 
fact the error rate is reduced from 13.1% to 10.2%. In absolute 
terms, these heuristic rules permit us to make the right approxi-
mation for ten notes more and introduce wrong approximations 
for only a note.  

The recognition of note events has been very successful: only 5 
notes were split into two events, thus identifying a total number of 
310 notes instead of 305. Such a negligible error rate can be easily 
fixed by a somewhat fuzzy algorithm for melody comparison and 
retrieval, for example in a hypothetic next stage of the audio front 
end. As already said, in the case of round-interval the segmen-
tation errors lead to heavier costs.  

An example of translation is reported in Table 4. It is shown the 

 Round 
MIDI 

Moving 
Tuning 

Round 
Intervals 

Proposed 
without 

local 
rules 

Proposed 
with local 

rules 

Nr.of Wrong Notes 
(total number of 
notes=310) 

81 177 63 45 36 

Error Rate (%) 
26.1% 57.1% 20.3% 14.5% 11.6% 

 

Table 3. Summary of performances for the five methods 
employed. Error rates account for both pitch and 
segmentation errors. 

 



Figure 7. Example of legato notes detection (melody 1).  

 

Figure 8. Transcription of melody 1 by a software tool 
available on the market and by the system developed here. 
Actual notes coincide with the sequence on the bottom. 

reference deviation on which the relative scale is built; errors are 
indicated in bold type. Without employing any local rules, the 
melody is perfectly approximated on the relative scale, while the 
round interval and moving-tuning approximations account 
respectively for an error and six errors.  

A hard problem for pitch-tracking algorithms are notes sung 
legato, for which there is neither a noticeable change in energy 
nor an abrupt modification in pitch. In Figure 7, the sampled 
waveform of the melody nr.1 is depicted with its translation. 
Three vertical lines highlight the estimated legato tones. The 
approximation introduced by the front end is able to capture the 
performance, splitting the legato notes in a natural way. The same 
file has been translated by means of Digital Ear by Epinoisis 
Software [2]. Since this software tool allows smart recognition of 
onsets and recovery of out-of-tune notes, different settings have 
been employed. In Figure 8, one of the resulting MIDI files (top 
figure) is compared to the translation obtained with our system 
(bottom figure). Although it is not made clear in the figure, the 

actual notes coincide with the latter tune; a number of errors both 
in the segmentation and pitch-tracking can be noted in the former 
translation. 

7. CONCLUSION AND FURTHER WORK 
The need of dedicated singing voice processing tools strongly 
arises in the context of query-by-humming systems. The transla-
tion of the acoustic input into a symbolic query is crucial for the 
effectiveness of every music information retrieval system.  

In the present work, well-known signal processing techniques 
have been combined with a novel approach. Our goal is the 
realization of an audio front end for identifying, segmenting and 
labeling a sung tune. The labeling stage constitutes the novelty; it 
enables to adjust a human performance out of a set of hypothesis 
on the most frequent errors made by singers. The adjustment 
follows two steps: global tuning and local rules. Both methods 
have been tested with twenty human performances (four tunes, 
five singers). We achieved the detection of some 90% of right 
notes with both steps. Previously employed methods like 
rounding to the nearest absolute tone or interval, and the moving 
tuning by McNab et al. [12], were outperformed, since they 
respectively accounted for about 74%, 80% and 44% of right 
notes. A special session of tests has been carried out to verify the 
ability of the pitch tracking stage in detecting vibrato and legato 
effects. An example has been reported in comparison with a 
software tool available on the market. The proposed front end 
roughly identified all the notes sung legato in our dataset. 
Quantitative results could not be presented, since it is impossible 
to classify as right/wrong the splitting point between two legato 
tones. 

Much work needs to be done in different directions. First, we are 
developing a new pre-processing stage for the detection of noise. 
The aim is twofold: improving the estimation of the background 
noise level and filtering the noisy sources from the singing voice. 
This pre-process should be very robust since we are looking to 
applications like query-by-singing by cellular phones or other 
mobile devices.  

In the post-processing stage, we relied on assumptions derived 
from the cited work of Lindsay [9]. Although these assumptions 
have been confirmed, a more rigorous model should be 
formalized. Moreover, we employ four local rules that have been 
introduced from experimental results but we don’t know how 
these rules can be arranged in a more general model.  

Query-by-singing is a straightforward extension of querying 
through hummed tones. Preliminary tests show that the task is not 
trivial and should need further experiments for the detection of 
note boundaries. As we said, language articulation could cause a 
wrong estimation of both the number of events and the rhythmic 
aspects of a performance. 

Finally, current implementation suffers from the known 
performance deficiencies of Java. The computation time is about 
the same of the play time (i.e. length of the audio file) on a 
Pentium III, 450MHz running Windows NT 4.0. Thus, a complete 
re-engineering of the package is necessary and we can not exclude 
the possibility of migrating to other software platforms.  
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