
An Audio Front End for Query-by-Humming Systems
Goffredo Haus Emanuele Pollastri

L.I.M.-Laboratorio di Informatica Musicale, Dipartimento di Scienze dell’Informazione, Università Statale di Milano
via Comelico, 39; I-20135 Milan (Italy)

+39-02-58356222
haus@dsi.unimi.it

+39-02-58356297
pollastri@dsi.unimi.it

ABSTRACT
In this paper, the problem of processing audio signals is addressed
in the context of query-by-humming systems. Since singing is
naturally used as input, we aim to develop a front end dedicated to
the symbolic translation of voice into a sequence of pitch and
duration pairs. This operation is crucial for the effectiveness of
searching for music by melodic similarity. In order to identify and
segment a tune, well-known signal processing techniques are
applied to the singing voice. After detecting pitch, a novel post-
processing stage is proposed to adjust the intonation of the user. A
global refinement is based on a relative scale estimated out of the
most frequent errors made by singers. Four rules are then em-
ployed to eliminate local errors. This front end has been tested
with five subjects and four short tunes, detecting some 90% of
right notes. Results have been compared to other approximation
methods like rounding to the nearest absolute tone/interval and an
example of adaptive moving tuning, achieving respectively 74%,
80% and 44% of right estimations. A special session of tests has
been conducted to verify the capability of the system in detecting
vibrato/legato notes. Finally, issues about the best representation
for the translated symbols are briefly discussed.

1. INTRODUCTION
In the last few years, the amount of bandwidth for multimedia
applications and the dimension of digital archives have been
continuously growing, so that accessibility and retrieval of
information are becoming the new emergency. In the case of
digital music archive, querying by melodic content received a lot
of attention. The preferred strategy has been the introduction of
query-by-humming interfaces that enable even non-professional
users to query by musical content. A number of different imple-
mentations has been presented since the first work by Ghias et al.
[4] and a brief overview is introduced in the next section. In spite
of this fact, the digital audio processing of an hummed tune has
been tackled with naive algorithms or with software tools avail-
able on the market. This fact results in a poor performance of the
translation from audio signals to symbols. Furthermore, previous
query-by-humming systems can be hardly extended to handle
sung queries (i.e. with lyrics) instead of hummed queries.

The quality of a query-by-humming system is strictly connected to
the accuracy of the audio translation. It is well known that the
amount of musical pieces retrieved through a melody grows when
the length of the query decreases [8, 12, 13, 22]. Employing
representations like the 3-level contour will further lengthen the
list of matched pieces. In the same time, we can not expect users
to search through very long queries (more than twenty notes long)
or to sing perfectly, without errors and approximations. Interval
representations show another source of errors, since a misplaced
note propagates to the contiguous one. Thus, an accurate transla-
tion of the input is surely a basic requirement for every query-by-
humming system.

In this paper, we propose an audio front end for the translation of
acoustic events into note-like attributes and dedicated to the
singing voice. We will focus on the post-processing of the voice
in order to minimize the characteristic errors of a singer. In other
words, the audio processing will be conducted in a user-oriented
way, that is, trying to understand the intention of the singer. This
work follows the one presented in [5] where some preliminary
work and experiments have been briefly illustrated.

2. RELATED WORK
There are many techniques to extract pitch information from audio
signals, primarily developed for speech and then extended to the
music domain. The detection of pitch from monophonic sources is
well understood and can be easily accomplished through the
analysis of the sampled waveform, the estimation of the spectrum,
the autocorrelation function or the cepstrum method.

Previous query-by-humming systems employed some basic pitch
tracking algorithms with only little pre- and post- processing, if
any. For example, Ghias et al. performed pitch extraction by
finding the peak of the autocorrelation of the signal [4], McNab et
al. employed the Gold-Rabiner algorithm [12], while Prechelt and
Typke looked for prominent peaks in the signal spectrum [16].
Rolland et al. [19] applied an autocorrelation algorithm with
heuristic rules for post-processing. Some works focused mainly
on the matching and indexing stages of the query-by-humming,
using software tools available on the market for the audio transla-
tion [3,7].

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.

Frame Frame/Block Event

MIC Input
Pre-Processing Pitch-Tracking Post-Processing

MIDI output

Figure 1. Architecture of the system developed.

Outside of the Music Information Retrieval community, the analy-
sis of the singing voice constitutes an established research field,
especially in the framework of voice analysis/re-synthesis. Typical
examples are the voice morphing system by Loscos et al. [10], the
structured audio approach to singing analysis score driven by Kim
[6] and the synthesis of voice based on sinusoidal modeling by
Macon et al. [11].

3. BACKGROUND
Despite its monophonic nature, singing has proved to be difficult
to analyze [21]. The time-varying spectral characteristics of voice
are similar during speech and singing. In both cases, we can
divide the generated sounds in voiced and unvoiced1. In order to
have an approximate idea of this property, we can think of the
former kind of sounds as consonants2 and the latter as vowels.
Since voiced sounds are constituted by periodic waveform, they
are easier to analyze, while unvoiced sounds have a state similar
to noise. Luckily, during singing the voiced properties are pre-
dominant and contain what we call musical pitches. However, the
information held by unvoiced regions are important as well, since
they often contain the rhythmic aspect of the performance. Unlike
speech, the singing voice shows a slowly-changing temporal
modulation both in the pitch and in the amplitude (vibrato). In
addition to these acoustic properties, singing voice analysis
should deal with human performance that is typically affected by
errors and unstable. Previous researches revealed that errors
remain constant regardless of the note distance in time and in
frequency [9]. We will follow these findings in the post-
processing step of the proposed front end.

4. VOICE PROCESSING
An audio front end for a query-by-humming/singing system
should contain all the elements needed to perform the transforma-
tion from audio to symbols, where audio is the singing voice and
symbols are the most likely sequences of notes and durations. It
should be able to adapt to the user automatically, i.e. without any
user-defined parameter settings. Further, it should not require a
particular way of singing, like inserting some little pause between
notes or following some reference musical scale or metronome. In
a query-by-singing application, the last requirements are impor-
tant to avoid limiting the number of potential users, who are
expected to be most non-professional users [5].

1 A more rigorous definition is the following: “speech sounds can

be voiced, fricative (or unvoiced) and plosive, according to their
mode of excitation” [18]. In the present paper, plosive and
fricative sounds will be grouped into the unvoiced category.

2 with the exception of [m][n][l] which are voiced.

We suggest to elaborate the audio signal at three different levels
of abstraction, each one with a particular set of operations and
suitable approximations:

1- event

2- block

3- frame

At the event level, we estimate starting/ending points of musically
meaningful signal, signal gain and, as a last step of computation,
pitches and durations. At the block level, a background noise
threshold is determined, voiced-unvoiced segments are isolated
and pitches are approximated; eventually, effects of vibrato or
bending are eliminated. At a frame level, we estimate spectrum,
zero crossing rate, RMS power and octave errors. From the above
observations, we derived an architecture (Figure 1) in which every
uncertainty about the audio signal is resolved with subsequent
approximations. The elaboration path is divided into three stages;
details of each stage are presented in the following sections. The
system developed is designed for offline voice processing and is
not currently developed for real-time operations. Thus, audio is
captured from a microphone, stored as wave file with sampling
frequency of 44100 samples/sec and 16 bit of quantization, and
then analyzed.

4.1 Pre-Processing
The first purpose of the audio front end is to estimate the
background noise. We evaluate the RMS power of the first 60
msec. of the signal; a threshold for the Signal/Noise discrimina-
tion is set to a value of 15% above this level (S/N threshold). If
this value is above –30dB, the user is asked to repeat the
recording in a less noisy room. Otherwise, two iterative processes
begin to analyze the waveform, one from the beginning and
another from the end. Both the processes perform the same
algorithm: the RMS power of the signal is calculated for frame
440 samples long (about 10 msec.) and compared with the S/N
threshold. To avoid the presence of ghost onsets caused by
impulsive noise, the value of the n-th frame is compared to the
(n+4)-th. The value of 40 msec. is too long for such noise and it is
not enough to skip a true note. The forward and backward analy-
sis are then composed giving respectively a first estimate of the
onset and offset points. The fragments of signal between each
onset and offset represent the musically meaningful events.

Before localizing voiced and unvoiced regions, we calculate the
derivative of the signal normalized to the maximum value, so that
the difference in amplitude is emphasized. This way, it will be
easier detecting the voiced consonants since their energy is most
likely to be lower than the energy of vowels. A well-known tech-
nique for performing the voice/unvoiced discrimination is derived
from speech recognition studies and relies on the estimation of the
RMS power and the Zero Crossing Rate [1, 18]. Plosive sounds
show high values of zero crossing rate because the spectral energy
is almost distributed at higher frequencies. Mean experimental

Figure 3. The proposed pitch-tracking stage; pitch detection is followed by a quantization step in
which median approximation, vibrato suppression and legato detection are applied. The output is
a sequence of pitches and durations.

Hamming
(46 msec)

FFT Peak Detection Median
(~120 msec)

Voiced
regions

Event
Boundaries

Shift (23 msec)

Octave
Error Check

Vibrato
Detection

Legato & split
events

Boundaries
Determination

Notes
(pitch-duration)

Pitch
Decision

Figure 2. The pre-processing stage of the system developed. An audio signal given in input is
segmented into musically meaningful events. Each event is characterized by its location in time
(event boundaries) and by its voiced region.

Noise level
estimation

S/N
discrimination

∆ signal On/offset
detection

Voiced/
Unvoiced

Voiced regions

Event
Boundaries

values of average number of zero crossings are 49 for unvoiced
sounds and 14 for voiced sounds in a 10 msec window. The task
is not trivial for other speech utterance like weak fricatives. A
better technique employs mean and standard deviation of the
RMS power and zero-crossing rate of both background noise and
signal as thresholds. Moreover, heuristic rules about the maxi-
mum duration admitted for each utterance are used. For example,
events longer than 260 msec can not be unvoiced. These methods
are applied to the derivative of the signal, detecting voiced conso-
nants, unvoiced sounds and vowels. Thanks to this procedure, we
can refine the on/offset estimation. In Figure 2 the process
explained so far is illustrated.

4.2 Pitch-Tracking
As we said, the pitch of a sung note is captured by its voiced
region and in particular by vowels. Thus, we will estimate pitch
only on those fragments. Compared to unvoiced sounds, voiced
sounds exhibit a relatively slowly-changing pitch. Thus, the frame
size can be widen. For each voiced fragment identified in the
segmentation step discussed above, the signal is divided into half-
overlapping Hamming windows of 46 msec (2048 samples) (see
Figure 3). A FFT algorithm is performed for each frame and the
most prominent peaks of the estimated spectrum are passed to the
next step. Here, it is taken the decision of pitch at the frame level.
The algorithm is a simplified version of the one presented in [15].
The basic rule is quite simple: the candidate peak centered at a
frequency in the range 87 Hz – 800 Hz that clearly shows at least
two overtones is the fundamental frequency. Then, fundamental
frequencies within an event are mediated along each three subse-
quent frames (median approximation) and are checked for octave
errors. A group of four contiguous frames with similar funda-
mental frequencies constitutes a block. This further level of

abstraction is needed to look for vibrato and legato (with
glissando), which are slowly changing modulations in pitch and in
amplitude. In the case of singing, vibrato is a regular modulation
with rate of 4/7 Hz (i.e. with a 150/240 msec period or about 1/2
blocks) and depth between 4% and 15% [14, 20]. Legato is
detected when adjacent blocks have pitches more than 0.8 semi-
tones apart. This former case is resolved generating two different
events; otherwise, the adjacent blocks are joint to form an event.
For each event, pitch values are set to the average of the pitches of
the constituting blocks. These information are gathered with the
relative positions of consonants and the exact bounds of each note
are estimated.

4.3 Post-Processing
The most critical stage is the post processing where the informa-
tion captured by earlier stages are interpreted as pitch and dura-
tion. The intonation of the user is rarely absolute3 and the
transcription process has to take into account a relative musical
scale. Pitches are measured in fraction of semitones to improve
the importance of the relative distance between tones in the frame
of the tempered musical scale. We use the definition of MIDI
note; the number resulting from the following equation is rounded
off to three decimal places:

3 Only about 1 in 10,000 people claim to have tone-Absolute

Pitch [17]

0
12

log
2log

1
f
f

NoteMIDI = Eq. 1

Figure 4. The post-processing stage of the system; the sequence of notes estimated in the previous stages is adjusted
by means of a relative scale and four local rules. The definitive tune is given in output.

Notes
(pitch-duration)

Reference
Deviation
Estimation

Scale
adjustment

Local
Rules TUNE

Bin Range Notes within a bin
Average
Deviation

Bin 1 0.0-0.199 0
Bin 2 0.1-0.299 61.255; 58.286 0.27
Bin 3 0.2-0.399 61.255;58.286;58.328; 63.352 0.305
Bin 4 0.3-0.499 58.328;63.352;56.423;56.435 0.384
Bin 5 0.4-0.599 56.423;56.435; 61.537 0.465
Bin 6 0.5-0.699 61.537; 56.693; 56.623; 56.628; 56.644 0.625
Bin 7 0.6-0.799 56.693; 56.623; 56.628; 56.644 0.647
Bin 8 0.7-0.899 60.872 0.872
Bin 9 0.8-0.999 60.872 0.872
Bin 10 0.9-0.099 0

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

10

b
in

freq.

Figure 5. Example of calculation of the reference deviation (in bold style). The deviations (right) within the highest bin (left) are
averaged.

where f0 is the frequency in Hertz associated to the MIDI note
zero, that is:

To our knowledge, only Mcnab et al. [12] introduced a procedure
to adjust the scale during transcription. They used a constantly
changing offset, initially estimated by the deviation of the sung
tone from the nearest tone on the equal tempered scale. The
resulting musical scale is continuously altering the reference
tuning, in relation to the previous note. They relied on the
assumption that singers tend to compress wide leaps and expand
sequences of smaller intervals, suggesting that errors accumulate
during singing. On the contrary, in this work we assume to deal
with constant sized errors in accordance with the experiments
conducted by Lindsay [9].

The tune estimated by the pitch-tracking is adjusted by means of
three different steps: estimation of a reference deviation, scale
adjustment and local refinement (Figure 4). The construction of a
relative scale is based on the following idea: every singer has its
own reference tone in mind and he/she sings each note relatively
to the scale constructed on that tone. There are two important
consequences: errors do not propagate during singing and are
constant, apart some small increases with the size of the interval.
These observations suggest to look for the reference tone of the
singer through the estimation of his/her most frequent deviations
from any given scale. In order to estimate the reference value for
the construction of a relative scale, the semitone is divided into
ten overlapping bins, each one being 0.2 semitone wide with an
overlapping region of 0.1 semitone. We compute the histogram of
the deviations from an absolute scale, which are the decimal digits

of the estimated MIDI notes. The mean of the deviations that
belong to the maximum bin is the constant average distance in
semitones from the user’s reference tone. Thus, the scale can be
shifted by this estimated amount. An example is illustrated in
Figure 5.

With the relative scale just introduced, we achieved results always
better than rounding to the nearest MIDI note or implementing the
algorithm by McNab et al. [12] (see next section for quantitative
results). It is worth noting that the minimization of error has been
obtained out of the whole performance of a singer. A further
refinement is possible considering some local rules. When the
reference deviation is between 0.15 and 0.85 semitones or there is
more than one maximum bin in the histogram, the approximation
introduced by the relative scale could be excessive. In particular,
notes that have a deviation from 0.3 to 0.7 semitones on the rela-
tive scale are said to be critical. In this case, other four hypothetic
melodies are considered; they reflect the following assumptions:

• a singer tends to correct its intonation from a note to the
following one.

• some singers show a stable, even if slight, sharp or flat
tuning with larger intervals (5 semitones and higher).

• rounded off absolute pitches and rounded intervals can
further adjust an imperfect intonation

A very simple rule allows to remove single-note mistakes. The
rounded melody on the relative scale is compared with the ones
just calculated: a note n on the relative scale is replaced by the nth
value given by three of the four representations above, when this
value is the same in the three.

Hzf 1758.8
2

440
12690 ≅= Eq. 2

5. REPRESENTATION ISSUES
The proposed front end can translate an acoustic input into a
sequence of symbols represented by MIDI note numbers and
durations in absolute time (milliseconds). This representation
could not be best suited for querying by melodic content because
it is not invariant to transpositions and different tempi. Musical
intervals are the most likely representation for searching by
similarity, as it is normally implemented by current query-by-
humming systems. Since we expect to have a good approximation
of the absolute pitches for each note, intervals can be naturally
obtained as difference between a pitch value and the previous one.

A different matter concerns the rhythmic information, for which
an acceptable representation is not known. Singers are likely to
make great approximations on tempo, probably larger than the
errors introduced by an imperfect estimation of note boundaries.
Thus, the introduction of a stage for tempo quantization should be
encouraged. For example, the measured lengths in msec of each
note event could be smoothed by means of a logarithmic function.
We suggest to use the following definition that is invariant to
different tempi:
















 +
⋅=

)(
)1(

log10)(10 iduration
iduration

roundiratio

The alphabet is constituted by integers in the range [–10÷10]; for
instance, the value 6 corresponds to the transition from a sixteenth
note to a quarter note and –6 is the reverse transition; equal length
transitions are represented by the symbol 0. Since it leads to a
very detailed description of rhythm, this definition can be easily
relaxed for handling approximate or contour-based representation
of durations.

6. EXPERIMENTAL RESULTS
The audio front-end illustrated in section 4 has been implemented
in Matlab code and Java applet. The first prototype allowed us to
adjust a proper set of parameters, while the second one has been
employed with human subjects. The Java applet provides a
graphical interface that allows users to record their voice through
the sound card and to store it as a wave file. The recorded audio
can be tracked and the translation can be stored as midifile or
played. The system produces two warnings in case of too low or
too high recording gain. Input and output gain can be easily
adjusted by means of two sliders. The audio waveform and a
graphical representation of the melody are given in output on the
screen (see Figure 6).

Five subjects were asked to participate to the experiment. None of
them was a musician or experienced singer, although they
declared to feel themselves inclined to sing. Three subjects were
male and two were female. The subjects sung in the tonality they
preferred but without lyrics (i.e. singing ‘na-na’, ‘ta-ta’, ‘pa-pa’),
simulating a query-by-humming session at home. The choice of
removing lyrics was suggested to take out another possible source
of errors that is difficult to quantify. Note segmentation is too
much dependent on the way users remember the metric of a song.
The experiment has been conducted in a non acoustically treated
room, thus, in medium noisy condition. The audio card was a
Creative Sound Blaster Live and the microphone was a cheap
model by Technics.

Four simple melodies were chosen among the ones that the
subjects proved to remember very well. The knowledge of the
melodies doesn’t hold a particular importance; it assures the
equivalence of the tunes to be evaluated. After the recording
sessions, a musician was asked to transcribe the melodies sung by
all the subjects without taking care of his memory of the melodies.
The aim was to keep as much as possible of the original intention
of the singers, and not their ability in remembering a music
fragment. A different interpretation occurred only with a subject
in three ending notes of a tune, but the same amount of notes has
been sung and rhythm has been preserved; for this reason, that
performance was included in the test. The transcriptions constitute
the reference melodies for the evaluation of the front end. Each
tune has been chosen for testing a particular block of the system.
The main characteristics of each melody are described in the
following:

§ Melody number 1: three legato notes (with bending)

§ Melody number 2: three sustained notes

§ Melody number 3: very long, but well-known as well,
sequence of notes (28 notes)

§ Melody number 4 (“Happy Birthday”): well-known tune
always sung in a different key

For each tune, the output of the front end is compared with the
transcriptions by the musician. Each different pitch accounts for
an error. In the case of round-interval tunes, the comparison has
been made on the transcribed intervals. For the evaluation of the
estimated durations, we consider only segmentation errors (i.e. a
note split into two or more notes and two or more notes grouped
into a note).

Eq. 3

Figure 6. Screen capture of the applet Java developed
running in Netscape Navigator. It is illustrated an example
of the translation of melody 1 (MIDI note on vertical axis;
value 0 indicates pauses; value 5 represents silence).

ALL SUBJECTS Round
MIDI

Moving
Tuning

Round
Intervals

Proposed
without

local
rules

Proposed
with local

rules

Melody 1 (13 notes) 15 38 7 5 3

Melody 2 (8 notes) 4 15 4 3 3

Melody 3 (28 notes) 38 89 34 24 21

Melody 4 (12 notes) 19 30 8 8 4

ALL MELODIES

Subject 1 22 26 12 8 10

Subject 2 9 42 8 8 5

Subject 3 14 35 12 8 6

Subject 4 17 32 10 6 3

Subject 5 14 37 11 10 7

Average Error (%) 24.9% 56.4% 17.4% 13.1% 10.2%

Table 1-2. Comparison of different methods for approximating
an estimated tune. With the exception of the last row, values
indicate the absolute number of wrong notes.

Variance Dev.
Round MIDI

0.134

Reference Dev.
Melody

0.625

Variance Dev.
Adjusted Mel.

0.036

Actual Melody 56 56 58 56 61 60 56 56 58 56 63 61

Sung Melody 56.693 56.623 58.328 56.628 61.255 60.872 56.423 56.435 58.286 56.644 63.352 61.537

Round-MIDI
Melody

57 57 58 57 61 61 56 56 58 57 63 62

Dev. Round-
MIDI Melody

-0.307 -0.377 0.328 -0.372 0.255 -0.128 0.423 0.435 0.286 -0.356 0.352 -0.463

Adjusted
Melody

56.068 55.998 57.703 56.003 60.63 60.247 55.798 55.81 57.661 56.019 62.727 60.912

Round
Adjusted Mel.

56 56 58 56 61 60 56 56 58 56 63 61

Dev. Adjusted
Melody

0.068 -0.002 -0.297 0.003 -0.37 0.247 -0.202 -0.19 -0.339 0.019 -0.273 -0.088

Rounded
Intervals

 0 2 -2 5 0 -4 0 2 -2 7 -2

Moving Tuning 57 56 58 57 62 61 56 56 58 57 63 62

Table 4. Approximation of melody 4 (first twelve notes of “Happy Birthday”); actual notes come from the transcription by a musician.
Sung melody represents the sequence of pitches given in output by the second stage of the front end.

Tests have been carried out with different approximation methods
for a direct comparison of the proposed one with the following:
rounded midi note, McNab’s moving tuning [12] and rounded
intervals. The proposed method has been also tested without local
rules (see Section 4.3), in order to assess their contribution.
Results are illustrated in Table 1 and 2, ordered respectively by
melody and by subject and without considering segmentation
errors. In Table 3 the overall error rates (with segmentation errors)
are summarized.

As previously noticed, the relative scale introduced in this work is
always better than any other approximation method. The moving
scale developed by McNab et al. [12] has the worst performance
(56.4% of wrong approximations), confirming that errors do not
accumulate. Rounding to the nearest tone on an absolute scale
(round-MIDI) lead to an error in 26.6% of the sung notes,

showing a performance comparable to the proposed method only
in the second melody. Here, the deviations from the MIDI scale
are close to zero, thus indicating the simple round as a valid
approximation. The round-interval tunes perform better as
expected (17.4% of wrong approximated notes), since it confirms
the previous work by Lindsay [9]. However, the segmentation
errors have an unwanted side effect on intervals, since a single
error propagates. Thus, the overall error rates increase more than
the number of the segmentation errors, going from 17.4% of
wrong pitches to 20.3% of wrong notes (pitch and segmentation).

The introduction of the four local rules bring some benefits, in
fact the error rate is reduced from 13.1% to 10.2%. In absolute
terms, these heuristic rules permit us to make the right approxi-
mation for ten notes more and introduce wrong approximations
for only a note.

The recognition of note events has been very successful: only 5
notes were split into two events, thus identifying a total number of
310 notes instead of 305. Such a negligible error rate can be easily
fixed by a somewhat fuzzy algorithm for melody comparison and
retrieval, for example in a hypothetic next stage of the audio front
end. As already said, in the case of round-interval the segmen-
tation errors lead to heavier costs.

An example of translation is reported in Table 4. It is shown the

 Round
MIDI

Moving
Tuning

Round
Intervals

Proposed
without

local
rules

Proposed
with local

rules

Nr.of Wrong Notes
(total number of
notes=310)

81 177 63 45 36

Error Rate (%)
26.1% 57.1% 20.3% 14.5% 11.6%

Table 3. Summary of performances for the five methods
employed. Error rates account for both pitch and
segmentation errors.

Figure 7. Example of legato notes detection (melody 1).

Figure 8. Transcription of melody 1 by a software tool
available on the market and by the system developed here.
Actual notes coincide with the sequence on the bottom.

reference deviation on which the relative scale is built; errors are
indicated in bold type. Without employing any local rules, the
melody is perfectly approximated on the relative scale, while the
round interval and moving-tuning approximations account
respectively for an error and six errors.

A hard problem for pitch-tracking algorithms are notes sung
legato, for which there is neither a noticeable change in energy
nor an abrupt modification in pitch. In Figure 7, the sampled
waveform of the melody nr.1 is depicted with its translation.
Three vertical lines highlight the estimated legato tones. The
approximation introduced by the front end is able to capture the
performance, splitting the legato notes in a natural way. The same
file has been translated by means of Digital Ear by Epinoisis
Software [2]. Since this software tool allows smart recognition of
onsets and recovery of out-of-tune notes, different settings have
been employed. In Figure 8, one of the resulting MIDI files (top
figure) is compared to the translation obtained with our system
(bottom figure). Although it is not made clear in the figure, the

actual notes coincide with the latter tune; a number of errors both
in the segmentation and pitch-tracking can be noted in the former
translation.

7. CONCLUSION AND FURTHER WORK
The need of dedicated singing voice processing tools strongly
arises in the context of query-by-humming systems. The transla-
tion of the acoustic input into a symbolic query is crucial for the
effectiveness of every music information retrieval system.

In the present work, well-known signal processing techniques
have been combined with a novel approach. Our goal is the
realization of an audio front end for identifying, segmenting and
labeling a sung tune. The labeling stage constitutes the novelty; it
enables to adjust a human performance out of a set of hypothesis
on the most frequent errors made by singers. The adjustment
follows two steps: global tuning and local rules. Both methods
have been tested with twenty human performances (four tunes,
five singers). We achieved the detection of some 90% of right
notes with both steps. Previously employed methods like
rounding to the nearest absolute tone or interval, and the moving
tuning by McNab et al. [12], were outperformed, since they
respectively accounted for about 74%, 80% and 44% of right
notes. A special session of tests has been carried out to verify the
ability of the pitch tracking stage in detecting vibrato and legato
effects. An example has been reported in comparison with a
software tool available on the market. The proposed front end
roughly identified all the notes sung legato in our dataset.
Quantitative results could not be presented, since it is impossible
to classify as right/wrong the splitting point between two legato
tones.

Much work needs to be done in different directions. First, we are
developing a new pre-processing stage for the detection of noise.
The aim is twofold: improving the estimation of the background
noise level and filtering the noisy sources from the singing voice.
This pre-process should be very robust since we are looking to
applications like query-by-singing by cellular phones or other
mobile devices.

In the post-processing stage, we relied on assumptions derived
from the cited work of Lindsay [9]. Although these assumptions
have been confirmed, a more rigorous model should be
formalized. Moreover, we employ four local rules that have been
introduced from experimental results but we don’t know how
these rules can be arranged in a more general model.

Query-by-singing is a straightforward extension of querying
through hummed tones. Preliminary tests show that the task is not
trivial and should need further experiments for the detection of
note boundaries. As we said, language articulation could cause a
wrong estimation of both the number of events and the rhythmic
aspects of a performance.

Finally, current implementation suffers from the known
performance deficiencies of Java. The computation time is about
the same of the play time (i.e. length of the audio file) on a
Pentium III, 450MHz running Windows NT 4.0. Thus, a complete
re-engineering of the package is necessary and we can not exclude
the possibility of migrating to other software platforms.

8. ACKNOWLEDGMENTS
The authors wish to thank Fabrizio Trotta who performed most of
the preparatory and programming work for this paper. Special
thanks to Giulio Agostini, Andrea D’Onofrio and Alessandro
Meroni for their precious help and good advice.

This project has been partially supported by the Italian National
Research Council in the frame of the Finalized Project “Cultural
Heritage” (Subproject 3, Topic 3.2, Subtopic 3.2.2, Target 3.2.1).

9. REFERENCES
[1] Deller, J. R., Porakis, J. G., Hansen, J. H. L. Discrete-Time

Processing of Speech Signals. Macmillan Publishing
Company, New York, 1993

[2] Digital Ear, Epinoisis Software, www.digital-ear.com

[3] Francu, C. and Nevill-Manning, C.G. Distance metrics and
indexing strategies for a digital library of popular music.
Proc. IEEE International Conf. on Multimedia and Expo,
2000.

[4] Ghias, A., Logan, D., Chamberlin, D., Smith, S.C. Query by
humming – musical information retrieval in an audio
database. in Proc. of ACM Multimedia’95, San Francisco,
Ca., Nov. 1995.

[5] Haus, G. and Pollastri, E. A multimodal framework for music
inputs. In Proc. of ACM Multimedia 2000, Los Angeles, CA,
Nov. 2000.

[6] Kim, Y. Structured encoding of the singing voice using prior
knowledge of the musical score. In Proc. of IEEE Workshop
on Applications of Signal Processing to Audio and
Acoustics, New Paltz, New York, Oct. 1999.

[7] Kosugi, N. et al. A practical query-by-humming system for a
large music database. ACM Multimedia 2000, Los Angeles,
CA, Nov. 2000.

[8] Lemstrom, K. Laine, P., Perttu, S. Using relative slope in
music information retrieval. In Proc. of Int. Computer Music
Conference (ICMC’99), pp. 317-320, Beijing, China, Oct.
1999

[9] Lindsay, A. Using contour as a mid-level representation of
melody. M.I.T. Media Lab, M.S. Thesis, 1997.

[10] Loscos, A. Cano, P. Bonada, J. de Boer, M. Serra, X. Voice
Morphing System for Impersonating in Karaoke
Applications. In Proc. of Int. Computer Music Conf. 2000,
Berlin, Germany, 2000.

[11] Macon, M., Link, J., Oliverio, L., Clements, J., George, E. A
singing voice synthesis system based on sinusoidal modeling.
In Proc. ICASSP 97, Munich, Germany, Apr. 1997.

[12] McNab, R.J., Smith, L.A., Witten, C.L., Henderson, C.L.,
Cunningham, S.J. Towards the digital music libraries: tune
retrieval from acoustic input. in Proc. of Digital Libraries
Conference, 1996.

[13] Melucci, M. and Orio, N. Musical information retrieval using
melodic surface. in Proc. of ACM SIGIR’99, Berkeley,
August 1999.

[14] Meron, Y. and Hirose, K. Synthesis of vibrato singing. In
Proc. of ICASSP 2000, Istanbul, Turkey, June 2000.

[15] Pollastri, E. Melody retrieval based on approximate string-
matching and pitch-tracking methods. In Proc. of XIIth Col-
loquium on Musical Informatics, AIMI/University of Udine,
Gorizia, Oct. 1998.

[16] Prechelt, L. and Typke, R. An interface for melody input.
ACM Trans. On Computer Human Interaction, Vol.8
(forthcoming issue), 2001.

[17] Profita, J. and Bidder, T.G. Perfect pitch. American Journal
of Medical Genetics, 29, 763-771, 1988.

[18] Rabiner, L.R. and Schafer, R.W. Digital signal processing of
speech signals. Prentice-Hall, 1978.

[19] Rolland, P., Raskinis, G., Ganascia, J. Musical content-based
retrieval: an overview of the Melodiscov approach and
system. In Proc. of ACM Multimedia’99, Orlando, Fl., Nov.
1999.

[20] Rossignol, S., Depalle, P., Soumagne, J., Rodet, X., Collette,
J.L. Vibrato: detection, estimation, extraction, modification.
In Proc. of DAFX99, Trondheim, Norway, Dec. 1999.

[21] Sundberg, J. The science of the singing voice. Northern
Illinois University Press, Dekalb, IL, 1987.

[22] Uitdenbogerd, A. and Zobel, J. Melodic matching techniques
for large music databases. In Proc. of ACM Multimedia’99,
Orlando, Fl., Nov. 1999.

